TY - JOUR
T1 - Composition and seasonal variation of Rhipicephalus turanicus and Rhipicephalus sanguineus bacterial communities
AU - Lalzar, Itai
AU - Harrus, Shimon
AU - Mumcuoglu, Kosta Y.
AU - Gottlieb, Yuval
PY - 2012/6
Y1 - 2012/6
N2 - A 16S rRNA gene approach, including 454 pyrosequencing and quantitative PCR (qPCR), was used to describe the bacterial community in Rhipicephalus turanicus and to evaluate the dynamics of key bacterial tenants of adult ticks during the active questing season. The bacterial community structure of Rh. turanicus was characterized by high dominance of Coxiella and Rickettsia and extremely low taxonomic diversity. Parallel diagnostic PCR further revealed a novel Coxiella species which was present and numerically dominant in all individual ticks tested (n=187). Coxiella sp. densities were significantly higher in female versus male ticks and were overall stable throughout the questing season. In addition, we revealed the presence of the novel Coxiella sp. in Rh. sanguineus adult ticks, eggs, and hatched larvae, indicating its vertical transmission. The presence of both spotted fever group Rickettsia spp. (SFGR) and non-SFGR was verified in the various individual ticks. The prevalence and density of Rickettsia spp. were very low compared to those of Coxiella sp. Furthermore, Rickettsia sp. densities were similar in males and females and significantly declined toward the end of the questing season. No correlation was found between Coxiella sp. and Rickettsia sp. densities. These results suggest different control mechanisms in the tick over its different bacterial populations and point to an obligatory and facultative association between the two tick species and Coxiella sp. and Rickettsia spp., respectively.
AB - A 16S rRNA gene approach, including 454 pyrosequencing and quantitative PCR (qPCR), was used to describe the bacterial community in Rhipicephalus turanicus and to evaluate the dynamics of key bacterial tenants of adult ticks during the active questing season. The bacterial community structure of Rh. turanicus was characterized by high dominance of Coxiella and Rickettsia and extremely low taxonomic diversity. Parallel diagnostic PCR further revealed a novel Coxiella species which was present and numerically dominant in all individual ticks tested (n=187). Coxiella sp. densities were significantly higher in female versus male ticks and were overall stable throughout the questing season. In addition, we revealed the presence of the novel Coxiella sp. in Rh. sanguineus adult ticks, eggs, and hatched larvae, indicating its vertical transmission. The presence of both spotted fever group Rickettsia spp. (SFGR) and non-SFGR was verified in the various individual ticks. The prevalence and density of Rickettsia spp. were very low compared to those of Coxiella sp. Furthermore, Rickettsia sp. densities were similar in males and females and significantly declined toward the end of the questing season. No correlation was found between Coxiella sp. and Rickettsia sp. densities. These results suggest different control mechanisms in the tick over its different bacterial populations and point to an obligatory and facultative association between the two tick species and Coxiella sp. and Rickettsia spp., respectively.
UR - http://www.scopus.com/inward/record.url?scp=84864087169&partnerID=8YFLogxK
U2 - 10.1128/AEM.00323-12
DO - 10.1128/AEM.00323-12
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 22467507
AN - SCOPUS:84864087169
SN - 0099-2240
VL - 78
SP - 4110
EP - 4116
JO - Applied and Environmental Microbiology
JF - Applied and Environmental Microbiology
IS - 12
ER -