TY - JOUR
T1 - Comprehensive Morpho-Electrotonic Analysis Shows 2 Distinct Classes of L2 and L3 Pyramidal Neurons in Human Temporal Cortex
AU - Deitcher, Yair
AU - Eyal, Guy
AU - Kanari, Lida
AU - Verhoog, Matthijs B.
AU - Atenekeng Kahou, Guy Antoine
AU - Mansvelder, Huibert D.
AU - De Kock, Christiaan P.J.
AU - Segev, Idan
N1 - Publisher Copyright:
© The Author 2017. Published by Oxford University Press.
PY - 2017/11/1
Y1 - 2017/11/1
N2 - There have been few quantitative characterizations of the morphological, biophysical, and cable properties of neurons in the human neocortex. We employed feature-based statistical methods on a rare data set of 60 3D reconstructed pyramidal neurons from L2 and L3 in the human temporal cortex (HL2/L3 PCs) removed after brain surgery. Of these cells, 25 neurons were also characterized physiologically. Thirty-two morphological features were analyzed (e.g., dendritic surface area, 36 333 ± 18 157 μm 2; number of basal trees, 5.55 ± 1.47; dendritic diameter, 0.76 ± 0.28 μm). Eighteen features showed a significant gradual increase with depth from the pia (e.g., dendritic length and soma radius). The other features showed weak or no correlation with depth (e.g., dendritic diameter). The basal dendritic terminals in HL2/L3 PCs are particularly elongated, enabling multiple nonlinear processing units in these dendrites. Unlike the morphological features, the active biophysical features (e.g., spike shapes and rates) and passive/cable features (e.g., somatic input resistance, 47.68 ± 15.26 M?, membrane time constant, 12.03 ± 1.79 ms, average dendritic cable length, 0.99 ± 0.24) were depth-independent. A novel descriptor for apical dendritic topology yielded 2 distinct classes, termed hereby as "slim-tufted" and "profuse-tufted" HL2/L3 PCs; the latter class tends to fire at higher rates. Thus, our morpho-electrotonic analysis shows 2 distinct classes of HL2/L3 PCs.
AB - There have been few quantitative characterizations of the morphological, biophysical, and cable properties of neurons in the human neocortex. We employed feature-based statistical methods on a rare data set of 60 3D reconstructed pyramidal neurons from L2 and L3 in the human temporal cortex (HL2/L3 PCs) removed after brain surgery. Of these cells, 25 neurons were also characterized physiologically. Thirty-two morphological features were analyzed (e.g., dendritic surface area, 36 333 ± 18 157 μm 2; number of basal trees, 5.55 ± 1.47; dendritic diameter, 0.76 ± 0.28 μm). Eighteen features showed a significant gradual increase with depth from the pia (e.g., dendritic length and soma radius). The other features showed weak or no correlation with depth (e.g., dendritic diameter). The basal dendritic terminals in HL2/L3 PCs are particularly elongated, enabling multiple nonlinear processing units in these dendrites. Unlike the morphological features, the active biophysical features (e.g., spike shapes and rates) and passive/cable features (e.g., somatic input resistance, 47.68 ± 15.26 M?, membrane time constant, 12.03 ± 1.79 ms, average dendritic cable length, 0.99 ± 0.24) were depth-independent. A novel descriptor for apical dendritic topology yielded 2 distinct classes, termed hereby as "slim-tufted" and "profuse-tufted" HL2/L3 PCs; the latter class tends to fire at higher rates. Thus, our morpho-electrotonic analysis shows 2 distinct classes of HL2/L3 PCs.
KW - dendritic cable properties
KW - electrical classification
KW - human pyramidal cells
KW - morphological classification
KW - mouse versus human dendrites
UR - http://www.scopus.com/inward/record.url?scp=85034770133&partnerID=8YFLogxK
U2 - 10.1093/cercor/bhx226
DO - 10.1093/cercor/bhx226
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 28968789
AN - SCOPUS:85034770133
SN - 1047-3211
VL - 27
SP - 5398
EP - 5414
JO - Cerebral Cortex
JF - Cerebral Cortex
IS - 11
ER -