Computational approaches to investigating allostery

Ora Schueler-Furman, Shoshana J. Wodak

Research output: Contribution to journalReview articlepeer-review

52 Scopus citations

Abstract

Allosteric regulation plays a key role in many biological processes, such as signal transduction, transcriptional regulation, and many more. It is rooted in fundamental thermodynamic and dynamic properties of macromolecular systems that are still poorly understood and are moreover modulated by the cellular context. Here we review the computational approaches used in the investigation of allosteric processes in protein systems. We outline how the models of allostery have evolved from their initial formulation in the sixties to the current views, which more fully account for the roles of the thermodynamic and dynamic properties of the system. We then describe the major classes of computational approaches employed to elucidate the mechanisms of allostery, the insights they have provided, as well as their limitations. We complement this analysis by highlighting the role of computational approaches in promising practical applications, such as the engineering of regulatory modules and identifying allosteric binding sites.

Original languageAmerican English
Pages (from-to)159-171
Number of pages13
JournalCurrent Opinion in Structural Biology
Volume41
DOIs
StatePublished - 1 Dec 2016

Bibliographical note

Publisher Copyright:
© 2016

Fingerprint

Dive into the research topics of 'Computational approaches to investigating allostery'. Together they form a unique fingerprint.

Cite this