TY - JOUR
T1 - Concurrent molecular characterization of sand flies and Leishmania parasites by amplicon-based next-generation sequencing
AU - Nasereddin, Abedelmajeed
AU - Ereqat, Suheir
AU - Al-Jawabreh, Amer
AU - Taradeh, Mohamad
AU - Abbasi, Ibrahim
AU - Al-Jawabreh, Hanan
AU - Sawalha, Samer
AU - Abdeen, Ziad
N1 - Publisher Copyright:
© 2022, The Author(s).
PY - 2022/12
Y1 - 2022/12
N2 - Background: Phlebotomine sand flies are vectors of Leishmania parasites, which are the causative agents of leishmaniasis. Herein, we developed an amplicon-based next-generation sequencing (Amp-NGS) to characterize sand flies and Leishmania parasites simultaneously targeting partial fragments of 18S rDNA and ITS1 genes, respectively. Methods: Our assay was optimized using reference sand fly (n = 8) and Leishmania spp. (n = 9) samples and validated using wild-caught sand flies from Palestine. The assay was highly specific, and all DNA references were successfully identified to the species level. Results: Among the wild-caught sand flies (n = 187), Phlebotomus spp. represented 95% of the collected samples (177/187), including Ph. sergenti (147/187, 79%), Ph. papatasi (19/187, 10.2%), Ph. perfiliewi (3/187, 1.6%), Ph. tobbi (2/187, 1.2%) and Ph. syriacus (6/187, 3.2%). Sergentomyia spp. represented only 5% (10/187) of the collected samples and included S. dentata (n = 6), S. fallax (n = 2), S. schwetzi (n = 1) and S. ghesquiere (n = 1). The study observed strong positive correlation between sand fly identification results of the Amp-NGS and morphological identification method (r = 0.84, df = 185, P < 0.001). Some discrepancies between the two methods in the identification of closely related species (i.e. Ph. perfiliewi, Ph. tobbi and Ph. syriacus) were observed. Leishmania DNA was detected and identified as L. tropica in 14 samples (14/187, 7.5%). Conclusions: Our assay was sensitive to detect (limit of detection was 0.0016 ng/reaction) and identify Leishmania DNA in sand flies, thus representing a new tool for studying sand flies and their associated Leishmania parasites in endemic areas. Graphical Abstract: [Figure not available: see fulltext.]
AB - Background: Phlebotomine sand flies are vectors of Leishmania parasites, which are the causative agents of leishmaniasis. Herein, we developed an amplicon-based next-generation sequencing (Amp-NGS) to characterize sand flies and Leishmania parasites simultaneously targeting partial fragments of 18S rDNA and ITS1 genes, respectively. Methods: Our assay was optimized using reference sand fly (n = 8) and Leishmania spp. (n = 9) samples and validated using wild-caught sand flies from Palestine. The assay was highly specific, and all DNA references were successfully identified to the species level. Results: Among the wild-caught sand flies (n = 187), Phlebotomus spp. represented 95% of the collected samples (177/187), including Ph. sergenti (147/187, 79%), Ph. papatasi (19/187, 10.2%), Ph. perfiliewi (3/187, 1.6%), Ph. tobbi (2/187, 1.2%) and Ph. syriacus (6/187, 3.2%). Sergentomyia spp. represented only 5% (10/187) of the collected samples and included S. dentata (n = 6), S. fallax (n = 2), S. schwetzi (n = 1) and S. ghesquiere (n = 1). The study observed strong positive correlation between sand fly identification results of the Amp-NGS and morphological identification method (r = 0.84, df = 185, P < 0.001). Some discrepancies between the two methods in the identification of closely related species (i.e. Ph. perfiliewi, Ph. tobbi and Ph. syriacus) were observed. Leishmania DNA was detected and identified as L. tropica in 14 samples (14/187, 7.5%). Conclusions: Our assay was sensitive to detect (limit of detection was 0.0016 ng/reaction) and identify Leishmania DNA in sand flies, thus representing a new tool for studying sand flies and their associated Leishmania parasites in endemic areas. Graphical Abstract: [Figure not available: see fulltext.]
KW - Amp-NGS
KW - Leishmania
KW - Phlebotomine sand flies
KW - Taxonomy
UR - http://www.scopus.com/inward/record.url?scp=85134600573&partnerID=8YFLogxK
U2 - 10.1186/s13071-022-05388-3
DO - 10.1186/s13071-022-05388-3
M3 - Article
C2 - 35869485
AN - SCOPUS:85134600573
SN - 1756-3305
VL - 15
SP - 1
EP - 12
JO - Parasites and Vectors
JF - Parasites and Vectors
IS - 1
M1 - 262
ER -