Conditions for clump survival in High-z disc galaxies

Avishai Dekel*, Offek Tziperman, Kartick C. Sarkar, Omri Ginzburg, Nir Mandelker, Daniel Ceverino, Joel Primack

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

We study the survival of giant clumps in high-redshift disc galaxies, short-lived (S) versus long-lived (L), and two L subtypes, via analytic modelling and simulations. We develop a criterion for clump survival, with/without gas, based on a survivability parameter S. It compares the energy sources by supernova feedback and gravitational contraction to the clump binding energy and losses by outflows and turbulence dissipation. The clump properties are derived from Toomre instability, approaching virial/Jeans equilibrium, and the supernova energy deposit uses an up-to-date bubble analysis. For moderate feedback, we find L clumps with circular velocities ∼50 km s-1 and masses ≥108 M·. They favour galaxies with circular velocities ≥200 km,s-1, consistent at z ∼2 with the typical disc stellar mass, ≥109.3 M·. L clumps favour disc gas fractions ≥0.3, low-mass bulges, and z ∼2. They disfavour more effective feedback due to, e.g. supernova clustering, very strong radiative feedback, top-heavy stellar mass function, or particularly high star-formation-rate (SFR) efficiency. A subtype of L clumps (LS), which lose their gas in several free-fall times but retain bound stellar components, may be explained by less contraction and stronger gravitational effects, where clump mergers increase the SFR efficiency. These may give rise to globular clusters. The more massive L clumps (LL) retain most of their baryons for tens of free-fall times with a roughly constant star-formation rate.

Original languageEnglish
Pages (from-to)4299-4322
Number of pages24
JournalMonthly Notices of the Royal Astronomical Society
Volume521
Issue number3
DOIs
StatePublished - 1 May 2023

Bibliographical note

Publisher Copyright:
© 2023 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society.

Keywords

  • dark matter
  • galaxies: disc
  • galaxies: evolution
  • galaxies: formation
  • galaxies: haloes
  • galaxies: interactions

Fingerprint

Dive into the research topics of 'Conditions for clump survival in High-z disc galaxies'. Together they form a unique fingerprint.

Cite this