Connecting two (or less) dots: Discovering structure in news articles

Dafna Shahaf*, Carlos Guestrin

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

26 Scopus citations

Abstract

Finding information is becoming a major part of our daily life. Entire sectors, from Web users to scientists and intelligence analysts, are increasingly struggling to keep up with the larger and larger amounts of content published every day. With this much data, it is often easy to miss the big picture. In this article, we investigate methods for automatically connecting the dots-providing a structured, easy way to navigate within a new topic and discover hidden connections. We focus on the news domain: given two news articles, our systemautomatically finds a coherent chain linking themtogether. For example, it can recover the chain of events starting with the decline of home prices (January 2007), and ending with the health care debate (2009). We formalize the characteristics of a good chain and provide a fast search-driven algorithm to connect two fixed endpoints. We incorporate user feedback into our framework, allowing the stories to be refined and personalized. We also provide a method to handle partially-specified endpoints, for users who do not know both ends of a story. Finally, we evaluate our algorithm over real news data. Our user studies demonstrate that the objective we propose captures the users' intuitive notion of coherence, and that our algorithm effectively helps users understand the news.

Original languageAmerican English
Article number24
JournalACM Transactions on Knowledge Discovery from Data
Volume5
Issue number4
DOIs
StatePublished - Feb 2012
Externally publishedYes

Keywords

  • Coherence

Cite this