Consequences of somite manipulation on the pattern of dorsal root ganglion development

C. Kalcheim, M. A. Teillet

Research output: Contribution to journalArticlepeer-review

108 Scopus citations

Abstract

We have investigated dorsal root ganglion formation, in the avian embryo, as a function of the composition of the paraxial somitic mesoderm. Three or four contiguous young somites were unilaterally removed from chick embryos and replaced by multiple cranial or caudal half-somites from quail embryos. Migration of neural crest cells and formation of DRG were subsequently visualized both by the HNK-1 antibody and the Feulgen nuclear stain. At advanced migratory stages (as defined by Teillet et al. Devl Biol. 120, 329-347 1987), neural crest cells apposed to the dorsolateral faces of the neural tube were distributed in a continous, nonsegmented pattern that was indistinguishable on unoperated sides and on sides into which either half of the somites had been grafted. In contrast, ventrolaterally, neural crest cells were distributed segmentally close to the neural tube and within the cranial part of each normal sclerotome, whereas they displayed a nonsegmental distribution when the graft involved multiple cranial half-somites or were virtually absent when multiple caudal half-somites had been implanted. In spite of the identical dorsal distribution of neural crest cells in all embryos, profound differences in the size and segmentation of DRG were observed during gangliogenesis (E4-9) according to the type of graft that had been performed. Thus when the implant consisted of compound cranial half-somites, giant, coalesced ganglia developed, encompassing the entire length of the graft. On the other hand, very small, dorsally located ganglia with irregular segmentation were seen at the level corresponding to the graft of multiple caudal half-somites. We conclude that normal morphogenesis of dorsal root ganglia depends upon the craniocaudal integrity of the somites.

Original languageAmerican English
Pages (from-to)85-93
Number of pages9
JournalJournal of Embryology and Experimental Morphology
Volume106
Issue number1
StatePublished - 1989

Fingerprint

Dive into the research topics of 'Consequences of somite manipulation on the pattern of dorsal root ganglion development'. Together they form a unique fingerprint.

Cite this