Contour Dice Loss for Structures with Fuzzy and Complex Boundaries in Fetal MRI

Bella Specktor-Fadida*, Bossmat Yehuda, Daphna Link-Sourani, Liat Ben-Sira, Dafna Ben-Bashat, Leo Joskowicz

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Volumetric measurements of fetal structures in MRI are time consuming and error prone and therefore require automatic segmentation. Placenta segmentation and accurate fetal brain segmentation for gyrification assessment are particularly challenging because of the placenta fuzzy boundaries and the fetal brain cortex complex foldings. In this paper, we study the use of the Contour Dice loss for both problems and compare it to other boundary losses and to the combined Dice and Cross-Entropy loss. The loss is computed efficiently for each slice via erosion, dilation and XOR operators. We describe a new formulation of the loss akin to the Contour Dice metric. The combination of the Dice loss and the Contour Dice yielded the best performance for placenta segmentation. For fetal brain segmentation, the best performing loss was the combined Dice with Cross-Entropy loss followed by the Dice with Contour Dice loss, which performed better than other boundary losses.

Original languageEnglish
Title of host publicationComputer Vision – ECCV 2022 Workshops, Proceedings
EditorsLeonid Karlinsky, Tomer Michaeli, Ko Nishino
PublisherSpringer Science and Business Media Deutschland GmbH
Pages355-368
Number of pages14
ISBN (Print)9783031250651
DOIs
StatePublished - 2023
Event17th European Conference on Computer Vision, ECCV 2022 - Tel Aviv, Israel
Duration: 23 Oct 202227 Oct 2022

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume13803 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference17th European Conference on Computer Vision, ECCV 2022
Country/TerritoryIsrael
CityTel Aviv
Period23/10/2227/10/22

Bibliographical note

Publisher Copyright:
© 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.

Keywords

  • Deep learning segmentation
  • Fetal MRI
  • Segmentation contour

Fingerprint

Dive into the research topics of 'Contour Dice Loss for Structures with Fuzzy and Complex Boundaries in Fetal MRI'. Together they form a unique fingerprint.

Cite this