Abstract
Volumetric measurements of fetal structures in MRI are time consuming and error prone and therefore require automatic segmentation. Placenta segmentation and accurate fetal brain segmentation for gyrification assessment are particularly challenging because of the placenta fuzzy boundaries and the fetal brain cortex complex foldings. In this paper, we study the use of the Contour Dice loss for both problems and compare it to other boundary losses and to the combined Dice and Cross-Entropy loss. The loss is computed efficiently for each slice via erosion, dilation and XOR operators. We describe a new formulation of the loss akin to the Contour Dice metric. The combination of the Dice loss and the Contour Dice yielded the best performance for placenta segmentation. For fetal brain segmentation, the best performing loss was the combined Dice with Cross-Entropy loss followed by the Dice with Contour Dice loss, which performed better than other boundary losses.
Original language | English |
---|---|
Title of host publication | Computer Vision – ECCV 2022 Workshops, Proceedings |
Editors | Leonid Karlinsky, Tomer Michaeli, Ko Nishino |
Publisher | Springer Science and Business Media Deutschland GmbH |
Pages | 355-368 |
Number of pages | 14 |
ISBN (Print) | 9783031250651 |
DOIs | |
State | Published - 2023 |
Event | 17th European Conference on Computer Vision, ECCV 2022 - Tel Aviv, Israel Duration: 23 Oct 2022 → 27 Oct 2022 |
Publication series
Name | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
---|---|
Volume | 13803 LNCS |
ISSN (Print) | 0302-9743 |
ISSN (Electronic) | 1611-3349 |
Conference
Conference | 17th European Conference on Computer Vision, ECCV 2022 |
---|---|
Country/Territory | Israel |
City | Tel Aviv |
Period | 23/10/22 → 27/10/22 |
Bibliographical note
Publisher Copyright:© 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.
Keywords
- Deep learning segmentation
- Fetal MRI
- Segmentation contour