Control methods for improved Fisher information with quantum sensing

Tuvia Gefen*, Fedor Jelezko, Alex Retzker

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

20 Scopus citations

Abstract

Recently new approaches for sensing the frequency of time dependent Hamiltonians have been presented, and it was shown that the optimal Fisher information scales as T4. We present here our interpretation of this new scaling, where the relative phase is accumulated quadratically with time, and show that this can be produced by a variety of simple pulse sequences. Interestingly, this scaling has a limited duration, and we show that certain pulse sequences prolong the effect. The performance of these schemes is analyzed and we examine their relevance to state-of-the-art experiments. We analyze the T3 scaling of the Fisher information which appears when multiple synchronized measurements are performed, and is the optimal scaling in the case of a finite coherence time.

Original languageEnglish
Article number032310
JournalPhysical Review A
Volume96
Issue number3
DOIs
StatePublished - 8 Sep 2017

Bibliographical note

Publisher Copyright:
© 2017 American Physical Society.

Fingerprint

Dive into the research topics of 'Control methods for improved Fisher information with quantum sensing'. Together they form a unique fingerprint.

Cite this