Abstract
Nanophotonics is based on the ability to construct structures with specific spatial distributions of the refractive index. Conventional nanophotonic structures are fabricated in planar settings, similar to electronic integrated circuits. We present a new class of nanophotonic structures with intricate design in three dimensions inspired by general relativity concepts, where the evolution of light is controlled through the space curvature of the medium. We demonstrate this concept by studying the evolution of light in a paraboloid structure inspired by the Schwarzschild metric describing the space surrounding a massive black hole. Our construction allows control over the trajectories, the diffraction properties and the phase and group velocities of wavepackets propagating within the curved-space structure. Finally, our structure exhibits tunnelling through an electromagnetic bottleneck by transforming guided modes into radiation modes and back. This generic concept can serve as the basis for curved nanophotonics and can be employed in integrated photonic circuits.
Original language | American English |
---|---|
Pages (from-to) | 664-670 |
Number of pages | 7 |
Journal | Nature Photonics |
Volume | 11 |
Issue number | 10 |
DOIs | |
State | Published - 1 Oct 2017 |
Bibliographical note
Funding Information:This research was supported by the Israeli Ministry of Science and Technology and by the US Air Force Office of Scientific Research. R.B. acknowledges support from the Adams Fellowship Program of the Israel Academy of Sciences and Humanities and the support of the National Science Foundation through a grant to ITAMP. Y.K. and A.J.A. thank Y. Garcia at the Brojde Center for Innovative Engineering and Computer Science for advice and assistance in using the Nanoscribe system.
Publisher Copyright:
© 2017 The Author(s).