Copper and iron are mobilized following myocardial ischemia: Possible predictive criteria for tissue injury

Mordechai Chevion*, Yandong Jiang, Ronit Har-El, Eduard Berenshtein, Gideon Uretzky, Nachum Kitrossky

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

201 Scopus citations

Abstract

Direct evidence for substantial mobilization of copper in the coronary flow immediately following prolonged, but not short, cardiac ischemia is presented. In the first coronary flow fraction (CFF) of reperfusion (0.15 ml), after 35 min of ischemia, the level of copper (as well as of iron) was 8 to 9-fold higher than the preischemic value. The levels in subsequent CFFs decreased and reached the preischemic value, indicating that both metals appear in a burst at the resumption of coronary flow. When the first CFF was used in a reaction mixture containing ascorbate and salicylate, the latter underwent chemical hydroxylation and was converted to its dihydroxybenzoate derivatives. Likewise, this CFF promoted the ascorbate-driven DNA degradation. Subsequent 150 CFFs were serially collected and demonstrated low activities. Following 18 min of ischemia, the copper level in the first CFF of reperfusion was only 15% over the preischemic value. In contrast, the mobilization of iron into coronary flow was significant but markedly lower than after 35 min. The levels of copper and the redox activity of the first CFF correlated well with the degree of loss of cardiac function, after 18 and 35 min of ischemia, respectively. After 18 min of ischemia, cardiac function was about 50% and the damage is considered reversible, whereas after 35 min the functional loss exceeded 80% and is considered irreversible. These results are in accord with the causative role that copper and iron can play in heart injury following ischemia, by virtue of their capacity to catalyze the production of hydroxyl radicals, and could lead to the development of new modalities for intervention in tissue injury.

Original languageEnglish
Pages (from-to)1102-1106
Number of pages5
JournalProceedings of the National Academy of Sciences of the United States of America
Volume90
Issue number3
StatePublished - 1 Feb 1993

Fingerprint

Dive into the research topics of 'Copper and iron are mobilized following myocardial ischemia: Possible predictive criteria for tissue injury'. Together they form a unique fingerprint.

Cite this