Core and margin in warm convective clouds-Part 1: Core types and evolution during a cloud's lifetime

Reuven H. Heiblum*, Lital Pinto, Orit Altaratz, Guy Dagan, Ilan Koren

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

The properties of a warm convective cloud are determined by the competition between the growth and dissipation processes occurring within it. One way to observe and follow this competition is by partitioning the cloud to core and margin regions. Here we look at three core definitions, namely positive vertical velocity (Wcore), supersaturation (RHcore), and positive buoyancy (Bcore), and follow their evolution throughout the lifetime of warm convective clouds. Using single cloud and cloud field simulations with binmicrophysics schemes, we show that the different core types tend to be subsets of one another in the following order: Bcore RHcore Wcore. This property is seen for several different thermodynamic profile initializations and is generally maintained during the growing and mature stages of a cloud's lifetime. This finding is in line with previous works and theoretical predictions showing that cumulus clouds may be dominated by negative buoyancy at certain stages of their lifetime. The RHcore-Wcore pair is most interchangeable, especially during the growing stages of the cloud. For all three definitions, the core-shell model of a core (positive values) at the center of the cloud surrounded by a shell (negative values) at the cloud periphery applies to over 80% of a typical cloud's lifetime. The core-shell model is less appropriate in larger clouds with multiple cores displaced from the cloud center. Larger clouds may also exhibit buoyancy cores centered near the cloud edge. During dissipation the cores show less overlap, reduce in size, and may migrate from the cloud center.

Original languageAmerican English
Pages (from-to)10717-10738
Number of pages22
JournalAtmospheric Chemistry and Physics
Volume19
Issue number16
DOIs
StatePublished - 26 Aug 2019
Externally publishedYes

Bibliographical note

Funding Information:
Financial support. This research has been supported by the Min-

Publisher Copyright:
© Author(s) 2019.

Fingerprint

Dive into the research topics of 'Core and margin in warm convective clouds-Part 1: Core types and evolution during a cloud's lifetime'. Together they form a unique fingerprint.

Cite this