Core and margin in warm convective clouds-Part 2: Aerosol effects on core properties

Reuven H. Heiblum, Lital Pinto, Orit Altaratz, Guy Dagan, Ilan Koren

Research output: Contribution to journalArticlepeer-review

2 Scopus citations


The effects of aerosol on warm convective cloud cores are evaluated using single cloud and cloud field simulations. Three core definitions are examined: positive vertical velocity (Wcore), supersaturation (RHcore), and positive buoyancy (Bcore). As presented in Part 1 (Heiblum et al., 2019), the property Bcore ⊆ RHcore ⊆ Wcore is seen during growth of warm convective clouds. We show that this property is kept irrespective of aerosol concentration. During dissipation core fractions generally decrease with less overlap between cores. However, for clouds that develop in low aerosol concentrations capable of producing precipitation, Bcore and subsequently Wcore volume fractions may increase during dissipation (i.e., loss of cloud mass). The RHcore volume fraction decreases during cloud lifetime and shows minor sensitivity to aerosol concentration. It is shown that a Bcore forms due to two processes: (i) convective updrafts-condensation within supersaturated updrafts and release of latent heat-and (ii) dissipative downdrafts-subsaturated cloudy downdrafts that warm during descent and "undershoot" the level of neutral buoyancy. The former process occurs during cloud growth for all aerosol concentrations. The latter process only occurs for low aerosol concentrations during dissipation and precipitation stages where large mean drop sizes permit slow evaporation rates and subsaturation during descent. The aerosol effect on the diffusion efficiencies plays a crucial role in the development of the cloud and its partition to core and margin. Using the RHcore definition, it is shown that the total cloud mass is mostly dictated by core processes, while the total cloud volume is mostly dictated by margin processes. Increase in aerosol concentration increases the core (mass and volume) due to enhanced condensation but also decreases the margin due to evaporation. In clean clouds larger droplets evaporate much slower, enabling preservation of cloud size, and even increase by detrainment and dilution (volume increases while losing mass). This explains how despite having smaller cores and less mass, cleaner clouds may live longer and grow to larger sizes.

Original languageAmerican English
Pages (from-to)10739-10755
Number of pages17
JournalAtmospheric Chemistry and Physics
Issue number16
StatePublished - 26 Aug 2019
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2019 The Author(s).


Dive into the research topics of 'Core and margin in warm convective clouds-Part 2: Aerosol effects on core properties'. Together they form a unique fingerprint.

Cite this