Abstract
Inhibition of the adenylate cyclase activity in homogenates of mouse neuroblastoma-glioma hybrid cells (NG108-15) by the opioid peptide [D-Ala2,Met5]enkephalin amide (AMEA) requires the presence of Na+ and GTP. In this process, the selectivity for monovalent cations is Na+ greater than or equal Li+ greater than K+ greater than choline+; ITP will replace GTP but ATP, UTP, or CTP will not. The apparent Km for Na+ is 20 mM and for GTP it is 1 microM. Under saturating Na+ and GTP conditions, the apparent Ki for AMEA-directed inhibition is 20 nM for basal and 100 nM for prostaglandin E1-activated adenylate cyclase activity. For both cyclase activities, maximal inhibition is only partial (i.e., approximately 55% of control in each case). In intact viable NG108-15 cells, the decrease in basal and prostaglandin E1-stimulated intracellular cyclic AMP concentrations by AMEA is also dependent upon extracellular Na+. The enkephalin-directed reductions in cyclic AMP concentrations are at least 75%. The specificity of the monovalent cation requirement for enkephalin action on intact cells is the same as for enkephalin regulation of homogenate adenylate cyclase activity. Based on these data, a model is presented in which the transfer of information from opiate receptors to adenylate cyclase requires active separate membrane components, which correspond to the sites of action of Na+ and GTP in this process.
Original language | English |
---|---|
Pages (from-to) | 5626-30 |
Number of pages | 5 |
Journal | Proceedings of the National Academy of Sciences |
Volume | 76 |
Issue number | 11 |
DOIs | |
State | Published - Nov 1979 |
Keywords
- Adenylyl Cyclase Inhibitors
- Adenylyl Cyclases/metabolism
- Animals
- Cations, Divalent/pharmacology
- Cations, Monovalent/pharmacology
- Cell Line
- Enkephalins/pharmacology
- Guanosine Triphosphate/pharmacology
- Membranes/enzymology
- Mice
- Neurons/enzymology
- Prostaglandins E/pharmacology
- Receptors, Opioid/metabolism
- Sodium/pharmacology