Coupling of opiate receptors to adenylate cyclase: requirement for Na+ and GTP

A J Blume, D Lichtshtein, G Boone

Research output: Contribution to journalArticlepeer-review

166 Scopus citations

Abstract

Inhibition of the adenylate cyclase activity in homogenates of mouse neuroblastoma-glioma hybrid cells (NG108-15) by the opioid peptide [D-Ala2,Met5]enkephalin amide (AMEA) requires the presence of Na+ and GTP. In this process, the selectivity for monovalent cations is Na+ greater than or equal Li+ greater than K+ greater than choline+; ITP will replace GTP but ATP, UTP, or CTP will not. The apparent Km for Na+ is 20 mM and for GTP it is 1 microM. Under saturating Na+ and GTP conditions, the apparent Ki for AMEA-directed inhibition is 20 nM for basal and 100 nM for prostaglandin E1-activated adenylate cyclase activity. For both cyclase activities, maximal inhibition is only partial (i.e., approximately 55% of control in each case). In intact viable NG108-15 cells, the decrease in basal and prostaglandin E1-stimulated intracellular cyclic AMP concentrations by AMEA is also dependent upon extracellular Na+. The enkephalin-directed reductions in cyclic AMP concentrations are at least 75%. The specificity of the monovalent cation requirement for enkephalin action on intact cells is the same as for enkephalin regulation of homogenate adenylate cyclase activity. Based on these data, a model is presented in which the transfer of information from opiate receptors to adenylate cyclase requires active separate membrane components, which correspond to the sites of action of Na+ and GTP in this process.

Original languageEnglish
Pages (from-to)5626-30
Number of pages5
JournalProceedings of the National Academy of Sciences
Volume76
Issue number11
DOIs
StatePublished - Nov 1979

Keywords

  • Adenylyl Cyclase Inhibitors
  • Adenylyl Cyclases/metabolism
  • Animals
  • Cations, Divalent/pharmacology
  • Cations, Monovalent/pharmacology
  • Cell Line
  • Enkephalins/pharmacology
  • Guanosine Triphosphate/pharmacology
  • Membranes/enzymology
  • Mice
  • Neurons/enzymology
  • Prostaglandins E/pharmacology
  • Receptors, Opioid/metabolism
  • Sodium/pharmacology

Fingerprint

Dive into the research topics of 'Coupling of opiate receptors to adenylate cyclase: requirement for Na+ and GTP'. Together they form a unique fingerprint.

Cite this