Coupling of opiate receptors to adenylate cyclase: Requirement for Na+ and GTP

A. J. Blume, D. Lichtshtein, G. Boone

Research output: Contribution to journalArticlepeer-review

166 Scopus citations

Abstract

Inhibition of the adenylate cyclase activity in homogenates of mouse neuroblastoma-glioma hybrid cells (NG108-15) by the opioid peptide [D-Ala2,Met5]enkephalin amide (AMEA) requires the presence of Na+ and GTP. In this process, the selectivity for monovalent cations is Na+≥Li+>K+>choline+; ITP will replace GTP but ATP, UTP, or CTP will not. The apparent K(m) for Na+ is 20 mM and for GTP it is 1 μM. Under saturating Na+ and GTP conditions, the apparent K(i) for AMEA-directed inhibition is 20 nM for basal and 100 nM for prostaglandin E1-activated adenylate cyclase activity. For both cyclase activities, maximal inhibition is only partial (i.e., ~55% of control in each case). In intact viable NG108-15 cells, the decrease in basal and prostaglandin E1-stimulated intracellular cyclic AMP concentrations by AMEA is also dependent upon extracellular Na+. The enkephalin-directed reductions in cyclic AMP concentrations are at least 75%. The specificity of the monovalent cation requirement for enkephalin action on intact cells is the same as for enkephalin regulation of homogenate adenylate cyclase activity. Based on these data, a model is presented in which the transfer of information from opiate receptors to adenylate cyclase requires active separate membrane components, which correspond to the sites of action of Na+ and GTP in this process.

Original languageEnglish
Pages (from-to)5626-5630
Number of pages5
JournalProceedings of the National Academy of Sciences of the United States of America
Volume76
Issue number11
DOIs
StatePublished - 1979
Externally publishedYes

Fingerprint

Dive into the research topics of 'Coupling of opiate receptors to adenylate cyclase: Requirement for Na+ and GTP'. Together they form a unique fingerprint.

Cite this