Abstract
The dynamics of frictional motion have been studied for hundreds of years, yet many aspects of these important processes are not understood. First described by Coulomb and Amontons as the transition from static to dynamic friction, the onset of frictional motion is central to fields as diverse as physics, tribology, mechanics of earthquakes, and fracture. We review recent studies in which fast (real-time) visualization of the true contact area along a rough spatially extended interface separating two blocks of like material has revealed the detailed dynamics of how this transition takes place. The onset of motion is preceded by a discrete sequence of rapid cracklike precursors, which are initiated at shear levels that are well below the threshold for static friction. These precursors systematically increase in spatial extent with the applied shear force and leave in their wake a significant redistribution of the true contact area. Their cumulative effect is such that, just prior to overall sliding of the blocks, a highly inhomogeneous contact profile is established along the interface. At the transition to overall motion, these precursor cracks trigger both stow propagation modes and modes that travel faster than the shear wave speed. Overall frictional motion takes place only when either the slow propagation modes or additional shear cracks excited by these slow modes traverse the entire interface. Surprisingly, in the resulting stick-slip motion, the surface contact profile retains the profile built up prior to the first slipping event. These results suggest a fracture-based mechanism for stick-slip motion that is qualitatively different from other descriptions.
Original language | English |
---|---|
Pages (from-to) | 1181-1189 |
Number of pages | 9 |
Journal | MRS Bulletin |
Volume | 33 |
Issue number | 12 |
DOIs | |
State | Published - Dec 2008 |
Bibliographical note
Funding Information:The authors acknowledge the support of the Israel Science Foundation (FIRST Grant 1116/05), as well as the U.S.–Israel Binational Science Foundation (Grant 2006288).