TY - JOUR
T1 - Cxcl10 + monocytes define a pathogenic subset in the central nervous system during autoimmune neuroinflammation
AU - Giladi, Amir
AU - Wagner, Lisa Katharina
AU - Li, Hanjie
AU - Dörr, Dorothea
AU - Medaglia, Chiara
AU - Paul, Franziska
AU - Shemer, Anat
AU - Jung, Steffen
AU - Yona, Simon
AU - Mack, Matthias
AU - Leutz, Achim
AU - Amit, Ido
AU - Mildner, Alexander
N1 - Publisher Copyright:
© 2020, The Author(s), under exclusive licence to Springer Nature America, Inc.
PY - 2020/5/1
Y1 - 2020/5/1
N2 - Multiple sclerosis (MS) is characterized by pathological inflammation that results from the recruitment of lymphoid and myeloid immune cells from the blood into the brain. Due to subset heterogeneity, defining the functional roles of the various cell subsets in acute and chronic stages of MS has been challenging. Here, we used index and transcriptional single-cell sorting to characterize the mononuclear phagocytes that infiltrate the central nervous system from the periphery in mice with experimentally induced autoimmune encephalomyelitis, a model of MS. We identified eight monocyte and three dendritic cell subsets at acute and chronic disease stages in which the defined transcriptional programs pointed toward distinct functions. Monocyte-specific cell ablation identified Cxcl10+ and Saa3+ monocytic subsets with a pathogenic potential. Transfer experiments with different monocyte and precursor subsets indicated that these Cxcl10+ and Saa3+ pathogenic cells were not derived from Ly6C+ monocytes but from early myeloid cell progenitors. These results suggest that blocking specific pathogenic monocytic subsets, including Cxcl10+ and Saa3+ monocytes, could be used for targeted therapeutic interventions.
AB - Multiple sclerosis (MS) is characterized by pathological inflammation that results from the recruitment of lymphoid and myeloid immune cells from the blood into the brain. Due to subset heterogeneity, defining the functional roles of the various cell subsets in acute and chronic stages of MS has been challenging. Here, we used index and transcriptional single-cell sorting to characterize the mononuclear phagocytes that infiltrate the central nervous system from the periphery in mice with experimentally induced autoimmune encephalomyelitis, a model of MS. We identified eight monocyte and three dendritic cell subsets at acute and chronic disease stages in which the defined transcriptional programs pointed toward distinct functions. Monocyte-specific cell ablation identified Cxcl10+ and Saa3+ monocytic subsets with a pathogenic potential. Transfer experiments with different monocyte and precursor subsets indicated that these Cxcl10+ and Saa3+ pathogenic cells were not derived from Ly6C+ monocytes but from early myeloid cell progenitors. These results suggest that blocking specific pathogenic monocytic subsets, including Cxcl10+ and Saa3+ monocytes, could be used for targeted therapeutic interventions.
UR - http://www.scopus.com/inward/record.url?scp=85083730003&partnerID=8YFLogxK
U2 - 10.1038/s41590-020-0661-1
DO - 10.1038/s41590-020-0661-1
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 32313246
AN - SCOPUS:85083730003
SN - 1529-2908
VL - 21
SP - 525
EP - 534
JO - Nature Immunology
JF - Nature Immunology
IS - 5
ER -