Cxcl10 + monocytes define a pathogenic subset in the central nervous system during autoimmune neuroinflammation

Amir Giladi, Lisa Katharina Wagner, Hanjie Li, Dorothea Dörr, Chiara Medaglia, Franziska Paul, Anat Shemer, Steffen Jung, Simon Yona, Matthias Mack, Achim Leutz, Ido Amit*, Alexander Mildner

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

63 Scopus citations

Abstract

Multiple sclerosis (MS) is characterized by pathological inflammation that results from the recruitment of lymphoid and myeloid immune cells from the blood into the brain. Due to subset heterogeneity, defining the functional roles of the various cell subsets in acute and chronic stages of MS has been challenging. Here, we used index and transcriptional single-cell sorting to characterize the mononuclear phagocytes that infiltrate the central nervous system from the periphery in mice with experimentally induced autoimmune encephalomyelitis, a model of MS. We identified eight monocyte and three dendritic cell subsets at acute and chronic disease stages in which the defined transcriptional programs pointed toward distinct functions. Monocyte-specific cell ablation identified Cxcl10+ and Saa3+ monocytic subsets with a pathogenic potential. Transfer experiments with different monocyte and precursor subsets indicated that these Cxcl10+ and Saa3+ pathogenic cells were not derived from Ly6C+ monocytes but from early myeloid cell progenitors. These results suggest that blocking specific pathogenic monocytic subsets, including Cxcl10+ and Saa3+ monocytes, could be used for targeted therapeutic interventions.

Original languageAmerican English
Pages (from-to)525-534
Number of pages10
JournalNature Immunology
Volume21
Issue number5
DOIs
StatePublished - 1 May 2020

Bibliographical note

Publisher Copyright:
© 2020, The Author(s), under exclusive licence to Springer Nature America, Inc.

Fingerprint

Dive into the research topics of 'Cxcl10 + monocytes define a pathogenic subset in the central nervous system during autoimmune neuroinflammation'. Together they form a unique fingerprint.

Cite this