Damped oscillations in the adaptive response of the iron homeostasis network of E. coli

Amnon Amir, Shiri Meshner, Tsevi Beatus, Joel Stavans*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

20 Scopus citations


Living organisms often have to adapt to sudden environmental changes and reach homeostasis. To achieve adaptation, cells deploy motifs such as feedback in their genetic networks, endowing the cellular response with desirable properties. We studied the iron homeostasis network of E. coli, which employs feedback loops to regulate iron usage and uptake, while maintaining intracellular iron at non-toxic levels. Using fluorescence reporters for iron-dependent promoters in bulk and microfluidics-based, single-cell experiments, we show that E. coli cells exhibit damped oscillations in gene expression, following sudden reductions in external iron levels. The oscillations, lasting for several generations, are independent of position along the cell cycle. Experiments with mutants in network components demonstrate the involvement of iron uptake in the oscillations. Our findings suggest that the response is driven by intracellular iron oscillations large enough to induce nearly full network activation/deactivation. We propose a mathematical model based on a negative feedback loop closed by rapid iron uptake, and including iron usage and storage, which captures the main features of the observed behaviour. Taken together, our results shed light on the control of iron metabolism in bacteria and suggest that the oscillations represent a compromise between the requirements of stability and speed of response.

Original languageAmerican English
Pages (from-to)428-436
Number of pages9
JournalMolecular Microbiology
Issue number2
StatePublished - Apr 2010
Externally publishedYes


Dive into the research topics of 'Damped oscillations in the adaptive response of the iron homeostasis network of E. coli'. Together they form a unique fingerprint.

Cite this