Abstract
The task of Composed Image Retrieval (CoIR) involves queries that combine image and text modalities, allowing users to express their intent more effectively. However, current CoIR datasets are orders of magnitude smaller compared to other vision and language (V&L) datasets. Additionally, some of these datasets have noticeable issues, such as queries containing redundant modalities. To address these shortcomings, we introduce the Large Scale Composed Image Retrieval (LaSCo) dataset, a new CoIR dataset which is ten times larger than existing ones. Pre-training on our LaSCo, shows a noteworthy improvement in performance, even in zero-shot. Furthermore, we propose a new approach for analyzing CoIR datasets and methods, which detects modality redundancy or necessity, in queries. We also introduce a new CoIR baseline, the Cross-Attention driven Shift Encoder (CASE). This baseline allows for early fusion of modalities using a cross-attention module and employs an additional auxiliary task during training. Our experiments demonstrate that this new baseline outperforms the current state-of-the-art methods on established benchmarks like FashionIQ and CIRR.
Original language | English |
---|---|
Pages (from-to) | 2991-2999 |
Number of pages | 9 |
Journal | Proceedings of the AAAI Conference on Artificial Intelligence |
Volume | 38 |
Issue number | 4 |
DOIs | |
State | Published - 25 Mar 2024 |
Event | 38th AAAI Conference on Artificial Intelligence, AAAI 2024 - Vancouver, Canada Duration: 20 Feb 2024 → 27 Feb 2024 |
Bibliographical note
Publisher Copyright:Copyright © 2024, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.