Deadenylase depletion protects inherited mRNAs in primordial germ cells

S. Zachary Swartz, Adrian M. Reich, Nathalie Oulhen, Tal Raz, Patrice M. Milos, Joseph P. Campanale, Amro Hamdoun, Gary M. Wessel

Research output: Contribution to journalArticlepeer-review

27 Scopus citations

Abstract

A crucial event in animal development is the specification of primordial germ cells (PGCs), which become the stem cells that create sperm and eggs. How PGCs are created provides a valuable paradigm for understanding stem cells in general. We find that the PGCs of the sea urchin Strongylocentrotus purpuratus exhibit broad transcriptional repression, yet enrichment for a set of inherited mRNAs. Enrichment of several germline determinants in the PGCs requires the RNA-binding protein Nanos to target the transcript that encodes CNOT6, a deadenylase, for degradation in the PGCs, thereby creating a stable environment for RNA. Misexpression of CNOT6 in the PGCs results in their failure to retain Seawi transcripts and Vasa protein. Conversely, broad knockdown of CNOT6 expands the domain of Seawi RNA as well as exogenous reporters. Thus, Nanos-dependent spatially restricted CNOT6 differential expression is used to selectively localize germline RNAs to the PGCs. Our findings support a 'time capsule' model of germline determination, whereby the PGCs are insulated from differentiation by retaining the molecular characteristics of the totipotent egg and early embryo.

Original languageAmerican English
Pages (from-to)3134-3142
Number of pages9
JournalDevelopment (Cambridge)
Volume141
Issue number16
DOIs
StatePublished - Aug 2014
Externally publishedYes

Keywords

  • CCR4
  • CNOT6
  • Germ line
  • Nanos
  • PGC
  • Pumilio
  • Sea urchin
  • Transcriptomics

Fingerprint

Dive into the research topics of 'Deadenylase depletion protects inherited mRNAs in primordial germ cells'. Together they form a unique fingerprint.

Cite this