Decay of the Kohn mode in hydrodynamic regime

A. Iqbal, A. Levchenko, M. Khodas

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

We develop a hydrodynamic description of the collective modes of interacting liquids in a quasi-one-dimensional confining potential. By solving Navier-Stokes equation we determine analytically the excitation spectrum of sloshing oscillations. For parabolic confinement, the lowest frequency eigenmode is not renormalized by interactions and is protected from decay by the Kohn theorem, which states that center of mass motion decouples from internal dynamics. We find that the combined effect of potential anharmonicity and interactions results in a frequency shift and final lifetime of the Kohn mode. All other excited modes of sloshing oscillations thermalize with the parametrically faster rate. Our results are significant for the interpretation of recent experiments with trapped Fermi gases that observed a weak violation of the Kohn theorem.

Original languageEnglish
Article number024303
JournalPhysical Review B - Condensed Matter and Materials Physics
Volume92
Issue number2
DOIs
StatePublished - 15 Jul 2015

Bibliographical note

Publisher Copyright:
©2015 American Physical Society.

Fingerprint

Dive into the research topics of 'Decay of the Kohn mode in hydrodynamic regime'. Together they form a unique fingerprint.

Cite this