Abstract
We report the detection and polarization of nuclear spins in diamond at room temperature by using a single nitrogen-vacancy (NV) center. We use Hartmann-Hahn double resonance to coherently enhance the signal from a single nuclear spin while decoupling from the noisy spin bath, which otherwise limits the detection sensitivity. As a proof of principle, we (i) observe coherent oscillations between the NV center and a weakly coupled nuclear spin and (ii) demonstrate nuclear-bath cooling, which prolongs the coherence time of the NV sensor by more than a factor of 5. Our results provide a route to nanometer scale magnetic resonance imaging and novel quantum information processing protocols.
Original language | English |
---|---|
Article number | 067601 |
Journal | Physical Review Letters |
Volume | 111 |
Issue number | 6 |
DOIs | |
State | Published - 5 Aug 2013 |