Detecting Narrative Elements in Informational Text

Effi Levi, Guy Mor, Tamir Sheafer, Shaul R. Shenhav

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

Automatic extraction of narrative elements from text, combining narrative theories with computational models, has been receiving increasing attention over the last few years. Previous works have utilized the oral narrative theory by Labov and Waletzky to identify various narrative elements in personal stories texts. Instead, we direct our focus to informational texts, specifically news stories. We introduce NEAT (Narrative Elements AnnoTation) - a novel NLP task for detecting narrative elements in raw text. For this purpose, we designed a new multi-label narrative annotation scheme, better suited for informational text (e.g. news media), by adapting elements from the narrative theory of Labov and Waletzky (Complication and Resolution) and adding a new narrative element of our own (Success). We then used this scheme to annotate a new dataset of 2,209 sentences, compiled from 46 news articles from various category domains1. We trained a number of supervised models in several different setups over the annotated dataset to identify the different narrative elements, achieving an average F1 score of up to 0.77. The results demonstrate the holistic nature of our annotation scheme as well as its robustness to domain category.

Original languageAmerican English
Title of host publicationFindings of the Association for Computational Linguistics
Subtitle of host publicationNAACL 2022 - Findings
PublisherAssociation for Computational Linguistics (ACL)
Pages1755-1765
Number of pages11
ISBN (Electronic)9781955917766
StatePublished - 2022
Event2022 Findings of the Association for Computational Linguistics: NAACL 2022 - Seattle, United States
Duration: 10 Jul 202215 Jul 2022

Publication series

NameFindings of the Association for Computational Linguistics: NAACL 2022 - Findings

Conference

Conference2022 Findings of the Association for Computational Linguistics: NAACL 2022
Country/TerritoryUnited States
CitySeattle
Period10/07/2215/07/22

Bibliographical note

Publisher Copyright:
© Findings of the Association for Computational Linguistics: NAACL 2022 - Findings.

Fingerprint

Dive into the research topics of 'Detecting Narrative Elements in Informational Text'. Together they form a unique fingerprint.

Cite this