Detection of Schistosoma mansoni and Schistosoma haematobium DNA by loop-mediated isothermal amplification: Identification of infected snails from early prepatency: Identification of infected snails from early prepatency

I. Abbasi, C.H. King, E.M. Muchiri, J. Hamburger

Research output: Contribution to journalArticlepeer-review

102 Scopus citations


Monitoring post-control transmission of schistosomes by examining humans becomes less effective as infection rates among humans decrease. Molecular monitoring of prepatent schistosome infection in snails by the polymerase chain reaction (PCR) has been used for studying human-to-snail transmission, and snail prepatent infection rates were found to correspond to infection prevalence and average intensity in human populations contacting the sites studied. We have now developed loop-mediated isothermal amplification (LAMP) assays for identifying Schistosoma mansoni and S. haematobium to facilitate large-scale evaluation of post-intervention transmission potential. LAMP primers were designed based on the Sm1-7 and Dral repeated sequences of the corresponding schistosomes, and amplification by LAMP of these 121-basepair highly abundant sequences provided a detection sensitivity of 0.1 fg of genomic DNA. When these LAMP assays were applied for examining infected laboratory snails, it was possible to identify infection from the first day after exposure to miracidia. The potential advantages of these assays are discussed. Copyright © 2010 by The American Society of Tropical Medicine and Hygiene.
Original languageEnglish
Pages (from-to)427-432
Number of pages6
JournalAmerican Journal of Tropical Medicine and Hygiene
Issue number2
StatePublished - 2010

Bibliographical note

Cited By :94

Export Date: 30 January 2023


Correspondence Address: Hamburger, J.; Kuvin Center for the Study of Infectious and Tropical Diseases, PO Box 12272, Jerusalem 91120, Israel; email:

Chemicals/CAS: DNA, Helminth

Funding details: National Institute of Allergy and Infectious Diseases, NIAID, R21AI076672

Funding details: Fogarty International Center, FIC, R01TW008067

References: Rabarijaona, L.P., Boisier, P., Ravaoalimalala, V.E., Jeanne, I., Roux, J.F., Jutand, M.A., Salamon, R., Lot quality assurance sampling for screening communities hyperendemic for Schistosoma mansoni (2003) Trop Med Int Health, 8, pp. 322-328; Lengeler, C., Utzinger, J., Tanner, M., Screening of schistosomiasis with questionnaires (2002) Trends Parasitol, 18, pp. 375-377; Fenwick, A., New initiatives against Africa's worms (2006) Trans R Soc Trop Med Hyg, 100, pp. 200-207; Satayathum, S.A., Muchiri, E.M., Ouma, J.H., Whalen, C.C., King, C.H., Factors affecting infection and reinfection with Schistosoma haematobium in coastal Kenya: Survival analysis during nine-year, school-based treatment program (2006) Am J Trop Med Hyg, 75, pp. 83-92; King, C., Dickman, K., Tisch, D.J., Reassessment of the cost of chronic helminthic infection: A meta-analysis of disability-related outcomes in endemic schistosomiasis (2005) Lancet, 365, pp. 1561-1569; Carabin, H., Marshall, C.M., Joseph, L., Riley, S., Olveda, R., McGarvey, S.T., Estimating the intensity of infection with Schistosoma japonicum in villagers of Leyte, Philippines. Part I: A Bayesian cumulative logit model. The schistosomiasis transmission & ecology project (step) (2005) American Journal of Tropical Medicine and Hygiene, 72 (6), pp. 745-753; Noya, B.A., Guevara, R.R., Colmenares, C., Losada, S., Noya, O., Low transmission areas of schistosomiasis in Venezuela: Consequences on the diagnosis treatment, and control (2006) Mem Inst Oswaldo Cruz, 101 (SUPPL. 1), pp. 29-35; Wilson, A., Van Dam, G.J., Kariuki, T.M., Farah, I.O., Deelder, A.M., Coulson, P.S., The detection limits for estimates of infection intensity in schistosomiasis mansoni established by a study in non-human primates (2006) Int J Parasitol, 36, pp. 1241-1244; Savioli, L., Hatz, C., Dixon, H., Kisumku, U.M., Mott, K.E., Control of morbidity due to Schistosoma haematobium on Pemba Island: Egg excretion and hematuria as indicators of infection (1990) Am J Trop Med Hyg, 43, pp. 289-295; Chandiwana, S.K., Woolhouse, M.E., Bradley, M., Factors affecting the intensity of reinfection with Schistosoma haematobium following treatment with praziquantel (1991) Parasitology, 102, pp. 73-83; Fulford, A.J., Ouma, J.H., Kariuki, H.C., Thiongo, F.W., Klumpp, R., Kloos, H., Sturrock, R.F., Butterworth, A.E., Water contact observations in Kenyan communities endemic for schistosomiasis: Methodology and patterns of behaviour (1996) Parasitology, 113, pp. 223-241; Vercruysse, J., Shaw, D.J., Bont, J., Index potential contamination for schistosomiasis (2001) Trends Parasitol, 17, pp. 256-261; Jordan, P., (1985) Schistosomiasis: The St. Lucia Project, , Cambridge, United Kingdom: Cambridge University Press; Ouma, J.H., Sturrock, R.F., Klumpp, P.K., Kariuki, H.C., A comparative evaluation of snail sampling and cercariometry to detect Schistosoma mansoni transmission in a large-scale, longitudinal field-study in Machakos, Kenya (1989) Parasitology, 99, pp. 349-355; Aoki, Y., Sato, K., Muhoho, N.D., Noda, S., Kimura, E., Cercariometry for detection of transmission sites for schistosomiasis (2003) Parasitol Int, 52, pp. 403-408; Woolhouse, M.E., Chandiwana, S.K., Spatial and temporal heterogeneity in the population dynamics of Bulinus globosus and Biomphalaria pfeifferi and the epidemiology of their infection with schistosomes (1989) Parasitology, 98, pp. 21-34; Kariuki, H.C., Clenon, J.A., Brady, M.S., Kitron, U., Sturrock, R.F., Ouma, J.H., Ndzovu, S.T., King, C.H., Distribution patterns and cercarial shedding of Bulinus nasutus and other snails in the Msambweni area, Coast Province, Kenya (2004) Am J Trop Med Hyg, 70, pp. 449-546; Hamburger, J., Turetsky, T., Kapeller, I., Deresievicz, R., Highly repeated short DNA sequences in the genome of Schistosoma mansoni recognized by a species-specific probe (1991) Mol Biochem Parasitol, 44, pp. 73-80; Hamburger, J., He, N., Xin, X.Y., Ramzy, R.M., Jourdane, J., Ruppel, A., A polymerase chain reaction assay for detecting snails infected with bilharzia parasites (Schistosoma mansoni) from very early prepatency (1998) Am J Trop Med Hyg, 59, pp. 872-876; Hamburger, J., He, N., Abassi, I., Ramzy, R.M., Jourdane, J., Rupple, A., Polymerase chain reaction assay based on a highly repeated sequence of Schistosoma haematobium: A potential tool for monitoring schistosome-infested water (2001) Am J Trop Med Hyg, 65, pp. 907-911; Hamburger, J., Hoffman, O., Kariuki, C.H., Muchiri, E.M., Ouma, J.H., Koech, D.K., Sturrock, R.F., King, C.H., Large-scale polymerase chain reaction-based surveillance of Schistosoma haematobium DNA in snails from transmission sites in coastal Kenya: A new tool for studying the dynamics of snail infection (2004) Am J Trop Med Hyg, 71, pp. 765-773; King, C.H., Sturrock, R.F., Kariuki, C.H., Hamburger, J., Transmission control for schistosomiasis. Why it matters now (2006) Trends Parasitol, 22, pp. 575-582; Farid, H.A., Morsy, Z.S., Helmy, H., Ramzy, R.M., El Setouhy, M., Weil, G.J., A critical appraisal of molecular xenomonitoring as a tool for assessing progress toward elimination of lymphatic filariasis (2007) Am J Trop Med Hyg, 77, pp. 593-600; Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N., Hase, T., Loop mediated isothermal amplification of DNA (2000) Nucleic Acids Res, 28, pp. e63i-vii; Poon, L.L., Wong, B.W., Ma, E.H., Chan, K.H., Chow, L.M., Abeyewickreme, W., Tangpukdee, N., Peiris, J.S., Sensitive and inexpensive molecular test for falciparum malaria: Detecting Plasmodium falciparum DNA directly from heat-treated blood by loop-mediated isothermal amplification (2006) Clin Chem, 52, pp. 303-306; Xu, J., Rong, R., Zhang, H.Q., Shi, C.J., Zhu, X.Q., Xia, C.M., Sensitive and rapid detection of Schistosoma japonicum DNA by loop-mediated isothermal amplification (LAMP) (2010) Int J Parasitol, 40, pp. 327-331; Mori, Y., Nagamine, K., Tomita, N., Notomi, T., Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation (2001) Biochem Biophys Res Commun, 289, pp. 150-154; Boehme, C.C., Nabeta, P., Henostroza, G., Raqib, R., Rahim, Z., Gerhardt, M., Sanga, E., Perkins, M.D., Operational feasibility of using loop-mediated isothermal amplification for diagnosis of pulmonary tuberculosis in microscopy centers in developing countries (2007) J Clin Microbiol, 45, pp. 1936-1940; Smithers, S.R., Terry, R.J., The infection of laboratory hosts with cercariae of Schistosoma mansoni and the recovery of adult worms (1965) Parasitology, 55, pp. 695-700; Sohni, Y., Kanjilal, S., Kapur, V., Performance of five commercial real-time PCR reagent systems using TaqMan assays for B. antracis detection (2008) Clin Biochem, 41, pp. 640-644; Pontes, L.A., Oliveira, M.C., Katz, N., Dias-Neto, E., Rabello, A., Comparison of a polymerase chain reaction and the Kato Katz technique for diagnosing infection with Schistosoma mansoni (2003) Am J Trop Med Hyg, 68, pp. 652-656; Wickman, D., Panning, M., Quack, T., Kramme, S., Burchard, G.D., Grevelding, C., Drosten, C., Diagnosing schistosomiasis by detection of cell-free parasite DNA in human plasma (2009) PLoS Negl Trop Dis, 3, pp. e422; Katholi, C.R., Toe, L., Merriweathe, A., Unnasch, T.R., Determining the prevalence of Onchocerca volvulus infection in vector populations by PCR screening of pools of black flies (1995) J Infect Dis, 172, pp. 1414-1417; Yameogo, L., Toe, L., Hougard, J.M., Boatin, B.A., Unnasch, T.R., Pool screen polymerase chain reaction for estimating the prevalence of Onchocerca volvulus infection in Simulium damnosum sensu lato: Results of a field trial in an area subject to successful vector control (1999) Am J Trop Med Hyg, 60, pp. 124-128; Helmy, H., Fischer, P., Farid, H.A., Bradley, M.H., Ramzy, R.M., Test strip detection of Wuchereria bancrofti amplified DNA in wild-caught Culex pipiens and estimation of infection rate by the PoolScreen algorithm (2004) Trop Med Int Health, 9, pp. 158-163; Webster, B.L., Rollinson, D., Stothard, J.R., Huyse, T., Rapid diagnostic multiplex PCR (RD-PCR) to discriminate Schistosoma haematobium and S. bovis (2010) J Helminthol, 84, pp. 107-114; Weyher, A., Phillips-Conroy, J., Fischer, K., Weil, G., Chansa, W., Fischer, P., Molecular identification of Schistosoma mattheei from feces of Kinda (Papio cynocephalus kindae) and greyfoot baboons (Papio cynocephalus gryseipes) in Zambia (2009) J Parasitol, , August 22. [Epub ahead of print]; Abbasi, I., King, C.H., Sturrock, R.F., Kariuki, C., Muchiri, E., Hamburger, J., Differentiation of Schistosoma haematobium from related schistosomes by PCR amplifying an inter-repeat sequence (2007) Am J Trop Med Hyg, 76, pp. 950-955; Webster, J.P., Davies, C.M., Coevolution and compatibility in the snail-schistosome system (2001) Parasitology, 123, pp. S41-S56


  • article
  • DNA determination
  • DNA sequence
  • loop mediated isothermal amplification
  • nonhuman
  • Schistosoma hematobium
  • Schistosoma mansoni
  • sensitivity analysis
  • snail
  • Animals
  • DNA, Helminth
  • Electrophoresis, Agar Gel
  • Mice
  • Nucleic Acid Amplification Techniques
  • Schistosoma haematobium
  • Snails
  • Gastropoda
  • Schistosoma


Dive into the research topics of 'Detection of Schistosoma mansoni and Schistosoma haematobium DNA by loop-mediated isothermal amplification: Identification of infected snails from early prepatency: Identification of infected snails from early prepatency'. Together they form a unique fingerprint.

Cite this