TY - JOUR
T1 - Developing an integrated understanding of the evolution of arthropod segmentation using fossils and evo-devo
AU - Chipman, Ariel D.
AU - Edgecombe, Gregory D.
N1 - Publisher Copyright:
© 2019 The Author(s) Published by the Royal Society. All rights reserved.
PY - 2019/10/9
Y1 - 2019/10/9
N2 - Segmentation is fundamental to the arthropod body plan. Understanding the evolutionary steps by which arthropods became segmented is being transformed by the integration of data from evolutionary developmental biology (evo-devo), Cambrian fossils that allow the stepwise acquisition of segmental characters to be traced in the arthropod stem-group, and the incorporation of fossils into an increasingly well-supported phylogenetic framework for extant arthropods based on genomic-scale datasets. Both evo-devo and palaeontology make novel predictions about the evolution of segmentation that serve as testable hypotheses for the other, complementary data source. Fossils underpin such hypotheses as arthropodization originating in a frontal appendage and then being co-opted into other segments, and segmentation of the endodermal midgut in the arthropod stem-group. Insights from development, such as tagmatization being associated with different modes of segment generation in different body regions, and a distinct patterning of the anterior head segments, are complemented by palaeontological evidence for the pattern of tagmatization during ontogeny of exceptionally preserved fossils. Fossil and developmental data together provide evidence for a short head in stem-group arthropods and the mechanism of its formation and retention. Future breakthroughs are expected from identification of molecular signatures of developmental innovations within a phylogenetic framework, and from a focus on later developmental stages to identify the differentiation of repeated units of different systems within segmental precursors.
AB - Segmentation is fundamental to the arthropod body plan. Understanding the evolutionary steps by which arthropods became segmented is being transformed by the integration of data from evolutionary developmental biology (evo-devo), Cambrian fossils that allow the stepwise acquisition of segmental characters to be traced in the arthropod stem-group, and the incorporation of fossils into an increasingly well-supported phylogenetic framework for extant arthropods based on genomic-scale datasets. Both evo-devo and palaeontology make novel predictions about the evolution of segmentation that serve as testable hypotheses for the other, complementary data source. Fossils underpin such hypotheses as arthropodization originating in a frontal appendage and then being co-opted into other segments, and segmentation of the endodermal midgut in the arthropod stem-group. Insights from development, such as tagmatization being associated with different modes of segment generation in different body regions, and a distinct patterning of the anterior head segments, are complemented by palaeontological evidence for the pattern of tagmatization during ontogeny of exceptionally preserved fossils. Fossil and developmental data together provide evidence for a short head in stem-group arthropods and the mechanism of its formation and retention. Future breakthroughs are expected from identification of molecular signatures of developmental innovations within a phylogenetic framework, and from a focus on later developmental stages to identify the differentiation of repeated units of different systems within segmental precursors.
KW - Arthropoda
KW - Evo-devo
KW - Palaeontology
UR - http://www.scopus.com/inward/record.url?scp=85072847756&partnerID=8YFLogxK
U2 - 10.1098/rspb.2019.1881
DO - 10.1098/rspb.2019.1881
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 31575373
AN - SCOPUS:85072847756
SN - 0962-8452
VL - 286
JO - Proceedings of the Royal Society B: Biological Sciences
JF - Proceedings of the Royal Society B: Biological Sciences
IS - 1912
M1 - 20191881
ER -