TY - JOUR
T1 - Development of Three-Dimensional Streamline Image Velocimetry Using Superimposed Delaunay Triangulation and Geometrical Fitting
AU - Ezra, Elishai
AU - Keinan, Eliezer
AU - Liberzon, Alex
AU - Nahmias, Yaakov
N1 - Publisher Copyright:
Copyright © 2016 by ASME.
PY - 2016/1/1
Y1 - 2016/1/1
N2 - Flow behavior in complex three-dimensional (3D) microscale domains is the key in the development of microcirculatory pathologies and the design of 3D microfluidics. While numerical simulations are common practice for the derivation of velocity fields in such domains, they are limited to known geometries. Current experimental methods such as micron-scale particle tracing comprise of intricate algorithmic approaches for the accurate tracing of numerous particles in a dense moving liquid suspension and are fundamentally limited in resolution to the finite size of the interrogated steps. Here, we introduce 3D streamlines image velocimetry (3D-SIV), a method to derive fluid velocity fields in arbitrary resolution for fully developed laminar flow in 3D geometries. Our approach utilizes 3D geometrical fitting and superimposed Delaunay triangulation to reconstruct streamtubes and to trace their volumetric changes. Our algorithm has applications in out-of-plane velocimetries, which we demonstrate in a 3D dilated curved geometry and in an ascending aorta. The 3D-SIV can be applied for high-resolution derivation of velocity fields in microcirculatory pathologies and to 3D microfluidic circuits, extending the potential of out-of-plane velocimetries to complex geometries and arbitrary resolution.
AB - Flow behavior in complex three-dimensional (3D) microscale domains is the key in the development of microcirculatory pathologies and the design of 3D microfluidics. While numerical simulations are common practice for the derivation of velocity fields in such domains, they are limited to known geometries. Current experimental methods such as micron-scale particle tracing comprise of intricate algorithmic approaches for the accurate tracing of numerous particles in a dense moving liquid suspension and are fundamentally limited in resolution to the finite size of the interrogated steps. Here, we introduce 3D streamlines image velocimetry (3D-SIV), a method to derive fluid velocity fields in arbitrary resolution for fully developed laminar flow in 3D geometries. Our approach utilizes 3D geometrical fitting and superimposed Delaunay triangulation to reconstruct streamtubes and to trace their volumetric changes. Our algorithm has applications in out-of-plane velocimetries, which we demonstrate in a 3D dilated curved geometry and in an ascending aorta. The 3D-SIV can be applied for high-resolution derivation of velocity fields in microcirculatory pathologies and to 3D microfluidic circuits, extending the potential of out-of-plane velocimetries to complex geometries and arbitrary resolution.
UR - http://www.scopus.com/inward/record.url?scp=84945920946&partnerID=8YFLogxK
U2 - 10.1115/1.4031611
DO - 10.1115/1.4031611
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:84945920946
SN - 0098-2202
VL - 138
JO - Journal of Fluids Engineering, Transactions of the ASME
JF - Journal of Fluids Engineering, Transactions of the ASME
IS - 1
M1 - 011205
ER -