TY - JOUR
T1 - Different molecular events account for butyrate-induced apoptosis in two human colon cancer cell lines
AU - Avivi-Green, Carmel
AU - Polak-Charcon, Sylvie
AU - Madar, Zecharia
AU - Schwartz, Betty
PY - 2002
Y1 - 2002
N2 - We studied the molecular events underlying butyrate-induced apoptosis in two different colon cancer cell lines: Caco-2, a well defined cancer cell and RSB, a cell line obtained from a colonic tumor of an ulcerative colitis patient. Caco-2 and RSB cells were exposed to 2, 5 and 10 mmol/L butyrate for 48 h. Caspase-1 was cleaved in Caco-2-cells at all butyrate concentrations, whereas in RSB-cells caspase-1 expression was undetectable. In RSB cells, butyrate dose-dependently induced caspase-3 cleavage, whereas in Caco-2-cells, butyrate up-regulated expression of the caspase-3 active subunit. Caspase-3-specific activity, cytoplasmic nucleosome concentration and growth were directly correlated with butyrate doses in both cell lines; however, the response was more pronounced in Caco-2 than in RSB cells. Expression of the cleaved poly(ADP-ribose) polymerase (PARP) product was elevated in both cell lines at the highest butyrate concentration. Bak expression gradually increased as a function of butyrate concentrations in both cell lines. At 10 mmol/L butyrate, expression increased by fivefold and sevenfold in Caco-2 and RSB cells, respectively. The highest expression of Bcl-2 was observed in control Caco-2 cells, and expression decreased with increasing butyrate concentration. This effect was not observed in RSB cells. Inactivation of caspase-1 with Z-YVAD-FMK abrogated butyrate-induced apoptosis in Caco-2 but not in RSB cells. Inactivation of caspase-3 with Z-DVED-FMK completely inhibited butyrate-induced apoptosis in RSB cells whereas this effect was less pronounced in Caco-2 cells. Our data demonstrate that butyrate-induced apoptosis is activated via different apoptotic pathways in diversely stratified colon cancers.
AB - We studied the molecular events underlying butyrate-induced apoptosis in two different colon cancer cell lines: Caco-2, a well defined cancer cell and RSB, a cell line obtained from a colonic tumor of an ulcerative colitis patient. Caco-2 and RSB cells were exposed to 2, 5 and 10 mmol/L butyrate for 48 h. Caspase-1 was cleaved in Caco-2-cells at all butyrate concentrations, whereas in RSB-cells caspase-1 expression was undetectable. In RSB cells, butyrate dose-dependently induced caspase-3 cleavage, whereas in Caco-2-cells, butyrate up-regulated expression of the caspase-3 active subunit. Caspase-3-specific activity, cytoplasmic nucleosome concentration and growth were directly correlated with butyrate doses in both cell lines; however, the response was more pronounced in Caco-2 than in RSB cells. Expression of the cleaved poly(ADP-ribose) polymerase (PARP) product was elevated in both cell lines at the highest butyrate concentration. Bak expression gradually increased as a function of butyrate concentrations in both cell lines. At 10 mmol/L butyrate, expression increased by fivefold and sevenfold in Caco-2 and RSB cells, respectively. The highest expression of Bcl-2 was observed in control Caco-2 cells, and expression decreased with increasing butyrate concentration. This effect was not observed in RSB cells. Inactivation of caspase-1 with Z-YVAD-FMK abrogated butyrate-induced apoptosis in Caco-2 but not in RSB cells. Inactivation of caspase-3 with Z-DVED-FMK completely inhibited butyrate-induced apoptosis in RSB cells whereas this effect was less pronounced in Caco-2 cells. Our data demonstrate that butyrate-induced apoptosis is activated via different apoptotic pathways in diversely stratified colon cancers.
KW - Apoptosis
KW - Butyrate
KW - Caspases
KW - Coloncancer
UR - http://www.scopus.com/inward/record.url?scp=0036306013&partnerID=8YFLogxK
U2 - 10.1093/jn/132.7.1812
DO - 10.1093/jn/132.7.1812
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 12097652
AN - SCOPUS:0036306013
SN - 0022-3166
VL - 132
SP - 1812
EP - 1818
JO - Journal of Nutrition
JF - Journal of Nutrition
IS - 7
ER -