Abstract
Motivated by symplectic geometry, we give a detailed account of differential forms and currents on orbifolds with corners, the pull-back and push-forward operations, and their fundamental properties. We work within the formalism where the category of orbifolds with corners is obtained as a localization of the category of étale proper groupoids with corners. Constructions and proofs are formulated in terms of the structure maps of the groupoids, avoiding the use of orbifold charts. The Fréchet space of differential forms on an orbifold and the dual space of currents are shown to be independent of which étale proper groupoid is chosen to represent the orbifold.
Original language | English |
---|---|
Pages (from-to) | 561-615 |
Number of pages | 55 |
Journal | Journal of Topology and Analysis |
Volume | 16 |
Issue number | 4 |
DOIs | |
State | Published - 1 Aug 2024 |
Bibliographical note
Publisher Copyright:© 2024 World Scientific. All rights reserved.
Keywords
- 2-category
- Differential form
- bicategory
- category of fractions
- integration over fibers
- orbifold
- étale proper groupoid