Dimension reduction in singularly perturbed continuous-time Bayesian networks

Nir Friedman*, Raz Kupferman

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

Continuous-time Bayesian networks (CTBNs) are graphical representations of multi-component continuous-time Markov processes as directed graphs. The edges in the network represent direct influences among components. The joint rate matrix of the multi-component process is specified by means of conditional rate matrices for each component separately. This paper addresses the situation where some of the components evolve on a time scale that is much shorter compared to the time scale of the other components. We prove that in the limit where the separation of scales is infinite, the Markov process converges (in distribution, or weakly) to a reduced, or effective Markov process that only involves the slow components. We also demonstrate that for a reasonable separation of scales (an order of magnitude) the reduced process is a good approximation of the marginal process over the slow components. We provide a simple procedure for building a reduced CTBN for this effective process, with conditional rate matrices that can be directly calculated from the original CTBN, and discuss the implications for approximate reasoning in large systems.

Original languageEnglish
Title of host publicationProceedings of the 22nd Conference on Uncertainty in Artificial Intelligence, UAI 2006
Pages182-191
Number of pages10
StatePublished - 2006
Event22nd Conference on Uncertainty in Artificial Intelligence, UAI 2006 - Cambridge, MA, United States
Duration: 13 Jul 200616 Jul 2006

Publication series

NameProceedings of the 22nd Conference on Uncertainty in Artificial Intelligence, UAI 2006

Conference

Conference22nd Conference on Uncertainty in Artificial Intelligence, UAI 2006
Country/TerritoryUnited States
CityCambridge, MA
Period13/07/0616/07/06

Fingerprint

Dive into the research topics of 'Dimension reduction in singularly perturbed continuous-time Bayesian networks'. Together they form a unique fingerprint.

Cite this