Dissecting the metabolic signaling pathways by which microbial molecules drive the differentiation of regulatory B cells

Maik Luu*, Felix F. Krause, Heide Monning, Anne Wempe, Hanna Leister, Lisa Mainieri, Sarah Staudt, Kai Ziegler-Martin, Kira Mangold, Nora Kappelhoff, Yoav D. Shaul, Stephan Göttig, Carlos Plaza-Sirvent, Leon N. Schulte, Isabelle Bekeredjian-Ding, Ingo Schmitz, Ulrich Steinhoff, Alexander Visekruna*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

The host-microbiome axis has been implicated in promoting anti-inflammatory immune responses. Yet, the underlying molecular mechanisms of commensal-mediated IL-10 production by regulatory B cells (Bregs) are not fully elucidated. Here, we demonstrate that bacterial CpG motifs trigger the signaling downstream of TLR9 promoting IκBNS-mediated expression of Blimp-1, a transcription regulator of IL-10. Surprisingly, this effect was counteracted by the NF-κB transcription factor c-Rel. A functional screen for intestinal bacterial species identified the commensal Clostridium sporogenes, secreting high amounts of short-chain fatty acids (SCFAs) and branched-chain fatty acids (BCFAs), as an amplifier of IL-10 production by promoting sustained mTOR signaling in B cells. Consequently, enhanced Breg functionality was achieved by combining CpG with the SCFA butyrate or the BCFA isovalerate thereby synergizing TLR- and mTOR-mediated pathways. Collectively, Bregs required two bacterial signals (butyrate and CpG) to elicit their full suppressive capacity and ameliorate T cell-mediated intestinal inflammation. Our study has dissected the molecular pathways induced by bacterial factors, which might contribute not only to better understanding of host-microbiome interactions, but also to exploration of new strategies for improvement of anti-inflammatory cellular therapy.

Original languageEnglish
JournalMucosal Immunology
DOIs
StateAccepted/In press - 2024

Bibliographical note

Publisher Copyright:
© 2024 The Author(s)

Keywords

  • Colitis
  • Microbial metabolites
  • Microbiota
  • NF-kB
  • Regulatory B cells

Fingerprint

Dive into the research topics of 'Dissecting the metabolic signaling pathways by which microbial molecules drive the differentiation of regulatory B cells'. Together they form a unique fingerprint.

Cite this