Abstract
Adult skeletal muscle possesses a remarkable regenerative capacity, due to the presence of satellite cells, adult muscle stem cells. We used fate-mapping techniques in avian and mouse models to show that trunk (Pax3+) and cranial (MesP1+) skeletal muscle and satellite cells derive from separate genetic lineages. Similar lineage heterogeneity is seen within the head musculature and satellite cells, due to their shared, heterogenic embryonic origins. Lineage tracing experiments with Isl1Cre mice demonstrated the robust contribution of Isl1+ cells to distinct jaw muscle-derived satellite cells. Transplantation of myofiber-associated, Isl1-derived satellite cells into damaged limb muscle contributed to muscle regeneration. In vitro experiments demonstrated the cardiogenic nature of cranial- but not trunk-derived satellite cells. Finally, overexpression of Isl1 in the branchiomeric muscles of chick embryos inhibited skeletal muscle differentiation in vitro and in vivo, suggesting that this gene plays a role in the specification of cardiovascular and skeletal muscle stem cell progenitors.
Original language | English |
---|---|
Pages (from-to) | 822-832 |
Number of pages | 11 |
Journal | Developmental Cell |
Volume | 16 |
Issue number | 6 |
DOIs | |
State | Published - 16 Jun 2009 |
Externally published | Yes |
Bibliographical note
Funding Information:This work was supported by research grants to E.T. from the Helen and Martin Kimmel Institute for Stem Cell Research; the Minerva Foundation, with funding from the Federal German Ministry for Education and Research; the Association Française Contre les Myopathies; the Israel Science Foundation; and the United States-Israel Binational Science Foundation. We thank Robert Kelly, Carmen Birchmeier, and Margaret Buckingham for insightful discussions, and Rachel Sarig, Ami Navon, and Orna Halevy for technical and scientific input. E.T. is the incumbent of the Gertrude and Philip Nollman Career Development Chair.
Keywords
- DEVBIO
- STEMCELL