Distinct Spatiotemporal Response Properties of Excitatory Versus Inhibitory Neurons in the Mouse Auditory Cortex

Ido Maor, Amos Shalev, Adi Mizrahi*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

33 Scopus citations

Abstract

In the auditory system, early neural stations such as brain stem are characterized by strict tonotopy, which is used to deconstruct sounds to their basic frequencies. But higher along the auditory hierarchy, as early as primary auditory cortex (A1), tonotopy starts breaking down at local circuits. Here, we studied the response properties of both excitatory and inhibitory neurons in the auditory cortex of anesthetized mice. We used in vivo two photon-targeted cell-attached recordings from identified parvalbumin-positive neurons (PVNs) and their excitatory pyramidal neighbors (PyrNs). We show that PyrNs are locally heterogeneous as characterized by diverse best frequencies, pairwise signal correlations, and response timing. In marked contrast, neighboring PVNs exhibited homogenous response properties in pairwise signal correlations and temporal responses. The distinct physiological microarchitecture of different cell types is maintained qualitatively in response to natural sounds. Excitatory heterogeneity and inhibitory homogeneity within the same circuit suggest different roles for each population in coding natural stimuli.

Original languageAmerican English
Pages (from-to)4242-4252
Number of pages11
JournalCerebral Cortex
Volume26
Issue number11
DOIs
StatePublished - 1 Oct 2016

Bibliographical note

Publisher Copyright:
© The Author 2016.

Keywords

  • brain maps
  • natural sounds
  • parvalbumin neurons (PV neurons)
  • two-photon targeted patch (TPTP)

Fingerprint

Dive into the research topics of 'Distinct Spatiotemporal Response Properties of Excitatory Versus Inhibitory Neurons in the Mouse Auditory Cortex'. Together they form a unique fingerprint.

Cite this