Distributed protocols for leader election: A game-theoretic perspective

Ittai Abraham, Danny Dolev, Joseph Y. Halpern

Research output: Contribution to journalArticlepeer-review

16 Scopus citations

Abstract

We do a game-theoretic analysis of leader election, under the assumption that each agent prefers to have some leader than no leader at all. We show that it is possible to obtain a fair Nash equilibrium, where each agent has an equal probability of being elected leader, in a completely connected network, in a bidirectional ring, and a unidirectional ring, in the synchronous setting. In the asynchronous setting, Nash equilibrium is not quite the right solution concept. Rather, we must consider ex post Nash equilibrium; this means that we have a Nash equilibrium no matter what a scheduling adversary does. We show that ex post Nash equilibrium is attainable in the asynchronous setting in all the networks we consider, using a protocol with bounded running time. However, in the asynchronous setting, we require that n > 2. We show that we can get a fair ex post ϵ-Nash equilibrium if n = 2 in the asynchronous setting under some cryptographic assumptions (specifically, the existence of a one-way functions), using a commitment protocol. We then generalize these results to a setting where we can have deviations by a coalition of size k. In this case, we can get what we call a fair k-resilient equilibrium in a completely connected network if n > 2k; under the same cryptographic assumptions, we can a get a k-resilient equilibrium in a completely connected network, unidirectional ring, or bidirectional ring if n > k. Finally, we show that under minimal assumptions, not only do our protocols give a Nash equilibrium, they also give a sequential equilibrium, so players even play optimally off the equilibrium path.

Original languageEnglish
Article numbera4
JournalACM Transactions on Economics and Computation
Volume7
Issue number1
DOIs
StatePublished - Feb 2019

Bibliographical note

Publisher Copyright:
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

Keywords

  • Ex post Nash equilibrium
  • Leader election

Fingerprint

Dive into the research topics of 'Distributed protocols for leader election: A game-theoretic perspective'. Together they form a unique fingerprint.

Cite this