TY - JOUR
T1 - DRV liposomal bupivacaine
T2 - Preparation, characterization, and in vivo evaluation in mice
AU - Grant, G. J.
AU - Barenholz, Y.
AU - Piskoun, B.
AU - Bansinath, M.
AU - Turndorf, H.
AU - Bolotin, E. M.
PY - 2001
Y1 - 2001
N2 - Purpose. To evaluate the dehydration-rehydration technique to prepare a formulation of liposomal bupivacaine, and to assess its analgesic efficacy. Methods. Bupivacaine hydrochloride (BUP) was encapsulated into dehydration-rehydration vesicles (DRV) of varying phospholipid (PL) compositions. Two bilayer-forming phospholipids were used, the "fluid" dimyristoyl-phosphatidylcholine and the "solid" distearoyl-phosphatidylcholine (DSPC), with 20 or 40 mol% cholesterol, in the presence of bupivacaine at a 1.28 or 0.64 BUP/PL mole ratio. After rehydration, drug/lipid ratios were determined. The formulation with the highest drug/lipid ratio (DSPC/cholesterol in an 8:2 mole ratio prepared in the presence of bupivacaine in a 1.28 BUP/PL mole ratio) was adjusted to a final bupivacaine concentration of 3.5% or 0.5%. The duration of skin analgesia after subcutaneous injection in mice produced by these formulations was compared with the conventional administration of a plain 0.5% solution of BUP. In addition, the concentration of residual bupivacaine at the injection site was followed for 96 h. Results. The relatively low organic solvent/aqueous phase and membrane/aqueous phase partition coefficients, together with liposomal trapped volume and BUP/PL mole ratio, indicated that most of the drug was encapsulated in the intraliposome aqueous phase of the DRV. The DSPC/cholesterol 8:2 mole ratio had the best drug encapsulation (BUP/PL = 0.36). Compared to plain BUP, these BUP-DRV produced significant prolongation of analgesia, which is explained by longer residence time of the drug at the site of injection. Conclusions. Bupivacaine-DRV may have a role in achieving safe, effective, and prolonged analgesia in humans.
AB - Purpose. To evaluate the dehydration-rehydration technique to prepare a formulation of liposomal bupivacaine, and to assess its analgesic efficacy. Methods. Bupivacaine hydrochloride (BUP) was encapsulated into dehydration-rehydration vesicles (DRV) of varying phospholipid (PL) compositions. Two bilayer-forming phospholipids were used, the "fluid" dimyristoyl-phosphatidylcholine and the "solid" distearoyl-phosphatidylcholine (DSPC), with 20 or 40 mol% cholesterol, in the presence of bupivacaine at a 1.28 or 0.64 BUP/PL mole ratio. After rehydration, drug/lipid ratios were determined. The formulation with the highest drug/lipid ratio (DSPC/cholesterol in an 8:2 mole ratio prepared in the presence of bupivacaine in a 1.28 BUP/PL mole ratio) was adjusted to a final bupivacaine concentration of 3.5% or 0.5%. The duration of skin analgesia after subcutaneous injection in mice produced by these formulations was compared with the conventional administration of a plain 0.5% solution of BUP. In addition, the concentration of residual bupivacaine at the injection site was followed for 96 h. Results. The relatively low organic solvent/aqueous phase and membrane/aqueous phase partition coefficients, together with liposomal trapped volume and BUP/PL mole ratio, indicated that most of the drug was encapsulated in the intraliposome aqueous phase of the DRV. The DSPC/cholesterol 8:2 mole ratio had the best drug encapsulation (BUP/PL = 0.36). Compared to plain BUP, these BUP-DRV produced significant prolongation of analgesia, which is explained by longer residence time of the drug at the site of injection. Conclusions. Bupivacaine-DRV may have a role in achieving safe, effective, and prolonged analgesia in humans.
KW - Analgesia
KW - Drug delivery
KW - Drug/lipid ratio
KW - Local anesthetics
UR - http://www.scopus.com/inward/record.url?scp=0034955555&partnerID=8YFLogxK
U2 - 10.1023/A:1011059131348
DO - 10.1023/A:1011059131348
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 11442274
AN - SCOPUS:0034955555
SN - 0724-8741
VL - 18
SP - 336
EP - 343
JO - Pharmaceutical Research
JF - Pharmaceutical Research
IS - 3
ER -