Abstract
Does the default mode network (DMN) reconfigure to encode information about the changing environment? This question has proven difficult, because patterns of functional connectivity reflect a mixture of stimulus-induced neural processes, intrinsic neural processes and non-neuronal noise. Here we introduce inter-subject functional correlation (ISFC), which isolates stimulus-dependent inter-regional correlations between brains exposed to the same stimulus. During fMRI, we had subjects listen to a real-life auditory narrative and to temporally scrambled versions of the narrative. We used ISFC to isolate correlation patterns within the DMN that were locked to the processing of each narrative segment and specific to its meaning within the narrative context. The momentary configurations of DMN ISFC were highly replicable across groups. Moreover, DMN coupling strength predicted memory of narrative segments. Thus, ISFC opens new avenues for linking brain network dynamics to stimulus features and behaviour.
Original language | English |
---|---|
Article number | 12141 |
Journal | Nature Communications |
Volume | 7 |
DOIs | |
State | Published - 18 Jul 2016 |
Bibliographical note
Funding Information:This work was supported by the NIH grant R01-MH094480 (U.H., E.S., C.J.H., J.C., Y.Y.), by the NIH NRSA-2T32MH065214-11(J.C.), and was partially supported by funding from the Intel Corporation. We would like to thank Nick-Turk Browne, Jeremy Manning and Yuan Chang Leong for their helpful comments on the manuscript; Paul DeGuzman and Dan Rosenthal for collecting the behavioural data; Catie Chang for providing the code for extracting the RVT signal; Francisco Pereira for providing the code for local clustering; Jochen Weber for technical support with Neuroelf; Tal Golan and Rafi Malach for valuable discussions.