Abstract
Enantioselective catalytic chiral reactions are important to all aspects of life sciences. Here we present the first utilization of the chiral induced spin selectivity (CISS) effect to form, enantioselectively, sp3 chiral centers in catalytic reactions, starting from achiral reagents. The enantiomeric symmetry is broken by affecting spin-controlled different reaction dynamics toward each of the enantiomers, using magnetic substrates. Two catalytic reactions are used for this purpose: a sulfide to sulfoxide oxidation and a Diels-Alder cycloaddition reaction, both catalyzed by hematite (Fe2O3). The proof of concept was evaluated by circular dichroism measurements and by chiral high-performance liquid chromatography techniques. These results provide direct evidence that the directionality of the electron spin can break enantiomeric symmetry, enabling asymmetric catalysis without using chiral reagents, solvents, or catalysts.
Original language | American English |
---|---|
Pages (from-to) | 5469-5472 |
Number of pages | 4 |
Journal | Journal of Physical Chemistry Letters |
Volume | 12 |
Issue number | 23 |
DOIs | |
State | Published - 17 Jun 2021 |
Bibliographical note
Funding Information:T.S.M. acknowledges the support from The Samuel and Lottie Rudin Scholarship Foundation. D.A. acknowledges support of an NSF-BSF grant 2018622. Y.P. acknowledges the support from the MOST grant 0604517311, and Volkswagen Stiftung grant 7500016, and last but not least special thanks to Dr. Ron Shaar and to Dr. Yael Ebert from the Institute of Earth Sciences for the magnetic measurements.
Publisher Copyright:
© 2021 American Chemical Society.