Abstract
E-Commerce marketplaces support millions of daily transactions, and some disagreements between buyers and sellers are unavoidable. Resolving disputes in an accurate, fast, and fair manner is of great importance for maintaining a trustworthy platform. Simple cases can be automated, but intricate cases are not sufficiently addressed by hard-coded rules, and therefore most disputes are currently resolved by people. In this work we take a first step towards automatically assisting human agents in dispute resolution at scale. We construct a large dataset of disputes from the eBay online marketplace, and identify several interesting behavioral and linguistic patterns. We then train classifiers to predict dispute outcomes with high accuracy. We explore the model and the dataset, reporting interesting correlations, important features, and insights.
Original language | English |
---|---|
Title of host publication | CIKM 2020 - Proceedings of the 29th ACM International Conference on Information and Knowledge Management |
Publisher | Association for Computing Machinery |
Pages | 1465-1474 |
Number of pages | 10 |
ISBN (Electronic) | 9781450368599 |
DOIs | |
State | Published - 19 Oct 2020 |
Event | 29th ACM International Conference on Information and Knowledge Management, CIKM 2020 - Virtual, Online, Ireland Duration: 19 Oct 2020 → 23 Oct 2020 |
Publication series
Name | International Conference on Information and Knowledge Management, Proceedings |
---|
Conference
Conference | 29th ACM International Conference on Information and Knowledge Management, CIKM 2020 |
---|---|
Country/Territory | Ireland |
City | Virtual, Online |
Period | 19/10/20 → 23/10/20 |
Bibliographical note
Publisher Copyright:© 2020 ACM.
Keywords
- dispute resolution
- e-commerce
- online transactions