TY - JOUR
T1 - Effect of Azospirillum brasilense inoculation on rhizobacterial communities analyzed by denaturing gradient gel electrophoresis and automated ribosomal intergenic spacer analysis
AU - Lerner, Anat
AU - Herschkovitz, Yoav
AU - Baudoin, Ezekiel
AU - Nazaret, Sylvie
AU - Moenne-Loccoz, Yvan
AU - Okon, Yaacov
AU - Jurkevitch, Edouard
PY - 2006/6
Y1 - 2006/6
N2 - Nucleic acid-based techniques allow the exploration of microbial communities in the environments such as the rhizosphere. Azospirillum brasilense, a plant growth promoting rhizobacterium (PGPR), causes morphological changes in the plant root system. These changes in root physiology may indirectly affect the microbial diversity of the rhizosphere. In this study, the changes in the rhizobacterial structure following A. brasilense inoculation of maize (Zea mays) plants was examined by PCR-denaturating gradient gel electrophoresis (DGGE) and automated ribosomal intergenic spacer analysis (ARISA), using two universal primers sets for the 16S rRNA gene, and an intergenic 16S-23S rDNA primer set, respectively. Similar results were obtained when using either ARISA or DGGE performed with these different primer sets, and analyzed by different statistical methods: no prominent effect of A. brasilense inoculation was observed on the bacterial communities of plant roots grown in two different soils and in different growth systems. In contrast, plant age caused significant shifts in the bacterial populations.
AB - Nucleic acid-based techniques allow the exploration of microbial communities in the environments such as the rhizosphere. Azospirillum brasilense, a plant growth promoting rhizobacterium (PGPR), causes morphological changes in the plant root system. These changes in root physiology may indirectly affect the microbial diversity of the rhizosphere. In this study, the changes in the rhizobacterial structure following A. brasilense inoculation of maize (Zea mays) plants was examined by PCR-denaturating gradient gel electrophoresis (DGGE) and automated ribosomal intergenic spacer analysis (ARISA), using two universal primers sets for the 16S rRNA gene, and an intergenic 16S-23S rDNA primer set, respectively. Similar results were obtained when using either ARISA or DGGE performed with these different primer sets, and analyzed by different statistical methods: no prominent effect of A. brasilense inoculation was observed on the bacterial communities of plant roots grown in two different soils and in different growth systems. In contrast, plant age caused significant shifts in the bacterial populations.
KW - A. brasilense
KW - ARISA
KW - Eubacterial primer sets
KW - Inoculation
KW - PCR-DGGE
KW - PGPR
UR - http://www.scopus.com/inward/record.url?scp=33646466287&partnerID=8YFLogxK
U2 - 10.1016/j.soilbio.2005.10.007
DO - 10.1016/j.soilbio.2005.10.007
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:33646466287
SN - 0038-0717
VL - 38
SP - 1212
EP - 1218
JO - Soil Biology and Biochemistry
JF - Soil Biology and Biochemistry
IS - 6
ER -