TY - JOUR
T1 - Effect of ensemble generalization on the highest-occupied Kohn-Sham eigenvalue
AU - Kraisler, Eli
AU - Schmidt, Tobias
AU - Kümmel, Stephan
AU - Kronik, Leeor
N1 - Publisher Copyright:
© 2015 AIP Publishing LLC.
PY - 2015/9/14
Y1 - 2015/9/14
N2 - There are several approximations to the exchange-correlation functional in density-functional theory, which accurately predict total energy-related properties of many-electron systems, such as binding energies, bond lengths, and crystal structures. Other approximations are designed to describe potential-related processes, such as charge transfer and photoemission. However, the development of a functional which can serve the two purposes simultaneously is a long-standing challenge. Trying to address it, we employ in the current work the ensemble generalization procedure proposed by Kraisler and Kronik [Phys. Rev. Lett. 110, 126403 (2013)]. Focusing on the prediction of the ionization potential via the highest occupied Kohn-Sham eigenvalue, we examine a variety of exchange-correlation approximations: the local spin-density approximation, semi-local generalized gradient approximations, and global and local hybrid functionals. Results for a test set of 26 diatomic molecules and single atoms are presented. We find that the aforementioned ensemble generalization systematically improves the prediction of the ionization potential, for various systems and exchange-correlation functionals, without compromising the accuracy of total energy-related properties. We specifically examine hybrid functionals. These depend on a parameter controlling the ratio of semi-local to non-local functional components. The ionization potential obtained with ensemble-generalized functionals is found to depend only weakly on the parameter value, contrary to common experience with non-generalized hybrids, thus eliminating one aspect of the so-called "parameter dilemma" of hybrid functionals.
AB - There are several approximations to the exchange-correlation functional in density-functional theory, which accurately predict total energy-related properties of many-electron systems, such as binding energies, bond lengths, and crystal structures. Other approximations are designed to describe potential-related processes, such as charge transfer and photoemission. However, the development of a functional which can serve the two purposes simultaneously is a long-standing challenge. Trying to address it, we employ in the current work the ensemble generalization procedure proposed by Kraisler and Kronik [Phys. Rev. Lett. 110, 126403 (2013)]. Focusing on the prediction of the ionization potential via the highest occupied Kohn-Sham eigenvalue, we examine a variety of exchange-correlation approximations: the local spin-density approximation, semi-local generalized gradient approximations, and global and local hybrid functionals. Results for a test set of 26 diatomic molecules and single atoms are presented. We find that the aforementioned ensemble generalization systematically improves the prediction of the ionization potential, for various systems and exchange-correlation functionals, without compromising the accuracy of total energy-related properties. We specifically examine hybrid functionals. These depend on a parameter controlling the ratio of semi-local to non-local functional components. The ionization potential obtained with ensemble-generalized functionals is found to depend only weakly on the parameter value, contrary to common experience with non-generalized hybrids, thus eliminating one aspect of the so-called "parameter dilemma" of hybrid functionals.
UR - http://www.scopus.com/inward/record.url?scp=84941312747&partnerID=8YFLogxK
U2 - 10.1063/1.4930119
DO - 10.1063/1.4930119
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:84941312747
SN - 0021-9606
VL - 143
JO - Journal of Chemical Physics
JF - Journal of Chemical Physics
IS - 10
M1 - 104105
ER -