TY - JOUR
T1 - Effects of feedback on galaxies in the VELA simulations
T2 - elongation, clumps, and compaction
AU - Ceverino, Daniel
AU - Mandelker, Nir
AU - Snyder, Gregory F.
AU - Lapiner, Sharon
AU - Dekel, Avishai
AU - Primack, Joel
AU - Ginzburg, Omri
AU - Larkin, Sean
N1 - Publisher Copyright:
© 2023 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society.
PY - 2023/7/1
Y1 - 2023/7/1
N2 - The evolution of star-forming galaxies at high redshifts is very sensitive to the strength and nature of stellar feedback. Using two sets of cosmological, zoom-in simulations from the VELA suite, we compare the effects of two different models of feedback: with and without kinetic feedback from the expansion of supernovae shells and stellar winds. At a fixed halo mass and redshift, the stellar mass is reduced by a factor of ∼1-3 in the models with stronger feedback, so the stellar mass-halo mass relation is in better agreement with abundance matching results. On the other hand, the three-dimensional shape of low-mass galaxies is elongated along a major axis in both models. At a fixed stellar mass, M∗ < 1010 M☉, galaxies are more elongated in the strong-feedback case. More massive, star-forming discs with high surface densities form giant clumps. However, the population of round, compact, old (agec > 300 Myr), quenched, stellar (or gas-poor) clumps is absent in the model with strong feedback. On the other hand, giant star-forming clumps with intermediate ages (agec = 100-300 Myr) can survive for several disc dynamical times, independently of feedback strength. The evolution through compaction followed by quenching in the plane of central surface density and specific star formation rate is similar under the two feedback models.
AB - The evolution of star-forming galaxies at high redshifts is very sensitive to the strength and nature of stellar feedback. Using two sets of cosmological, zoom-in simulations from the VELA suite, we compare the effects of two different models of feedback: with and without kinetic feedback from the expansion of supernovae shells and stellar winds. At a fixed halo mass and redshift, the stellar mass is reduced by a factor of ∼1-3 in the models with stronger feedback, so the stellar mass-halo mass relation is in better agreement with abundance matching results. On the other hand, the three-dimensional shape of low-mass galaxies is elongated along a major axis in both models. At a fixed stellar mass, M∗ < 1010 M☉, galaxies are more elongated in the strong-feedback case. More massive, star-forming discs with high surface densities form giant clumps. However, the population of round, compact, old (agec > 300 Myr), quenched, stellar (or gas-poor) clumps is absent in the model with strong feedback. On the other hand, giant star-forming clumps with intermediate ages (agec = 100-300 Myr) can survive for several disc dynamical times, independently of feedback strength. The evolution through compaction followed by quenching in the plane of central surface density and specific star formation rate is similar under the two feedback models.
KW - galaxies: evolution
KW - galaxies: formation
KW - galaxies: high-redshift
UR - http://www.scopus.com/inward/record.url?scp=85159781309&partnerID=8YFLogxK
U2 - 10.1093/mnras/stad1255
DO - 10.1093/mnras/stad1255
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:85159781309
SN - 0035-8711
VL - 522
SP - 3912
EP - 3925
JO - Monthly Notices of the Royal Astronomical Society
JF - Monthly Notices of the Royal Astronomical Society
IS - 3
ER -