Efficient Langevin dynamics for “noisy” forces

Eitam Arnon, Eran Rabani, Daniel Neuhauser, Roi Baer

Research output: Contribution to journalArticlepeer-review


Efficient Boltzmann-sampling using first-principles methods is challenging for extended systems due to the steep scaling of electronic structure methods with the system size. Stochastic approaches provide a gentler system-size dependency at the cost of introducing “noisy” forces, which could limit the efficiency of the sampling. When the forces are deterministic, the first-order Langevin dynamics (FOLD) offers efficient sampling by combining a well-chosen preconditioning matrix S with a time-step-bias-mitigating propagator [G. Mazzola and S. Sorella, Phys. Rev. Lett. 118, 015703 (2017)]. However, when forces are noisy, S is set equal to the force-covariance matrix, a procedure that severely limits the efficiency and the stability of the sampling. Here, we develop a new, general, optimal, and stable sampling approach for FOLD under noisy forces. We apply it for silicon nanocrystals treated with stochastic density functional theory and show efficiency improvements by an order-of-magnitude.
Original languageEnglish
Article number161103
Number of pages5
JournalJournal of Chemical Physics
Issue number16
StatePublished - 2020


Dive into the research topics of 'Efficient Langevin dynamics for “noisy” forces'. Together they form a unique fingerprint.

Cite this