Efficient linear unboundedness testing: Algorithm and applications to translational assembly planning

Fabian Schwarzer, Achim Schweikard, Leo Joskowicz

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

We address the problem of efficiently testing for linear unboundedness and its applications to translational assembly planning. We describe a new algorithm that performs the test by solving a single homogeneous system of equations followed by a single linear feasibility test. We show that testing for unboundedness is computationally at least as hard as these two subproblems. The new algorithm is the fastest known algorithm and is practical. We then present a framework for general translational assembly planning based on linear constraints. We show the relation of m-handed assembly planning to unboundedness testing and present a polynomial-time algorithm for m-handed assembly of polygonal part assemblies with no initially separated pairs of parts. For the general translational assembly-planning problem, we present a new algorithm that uses unboundedness testing and a cell reduction technique to significantly increase the search efficiency. Experimental results of our implementation on a variety of planar and spatial assemblies demonstrate the practicality of the algorithms.

Original languageAmerican English
Pages (from-to)817-834
Number of pages18
JournalInternational Journal of Robotics Research
Volume19
Issue number9
DOIs
StatePublished - Sep 2000

Fingerprint

Dive into the research topics of 'Efficient linear unboundedness testing: Algorithm and applications to translational assembly planning'. Together they form a unique fingerprint.

Cite this