TY - JOUR
T1 - Electro-oxidation of ruthenium cyclopentadienyl PTA complexes in DMF
AU - Gutkin, Vitaly
AU - Gun, Jenny
AU - Prikhodchenko, Petr V.
AU - Lev, Ovadia
AU - Gonsalvi, Luca
AU - Peruzzini, Maurizio
AU - Romerosa, Antonio
AU - Malpartida, Tatiana Campos
AU - Lidrissi, Chaker
PY - 2007
Y1 - 2007
N2 - Halogen complexes of ruthenium cyclopentadienyl [CpRu (PTA)2 X]; [CpRu (PTA) (PPh3) X]; [CpRu (PPh3) 2 Cl], and [CpRu (mPTA) (PPh3) X]+ (Cp= C5 H5; PTA=1,3,5-triaza-7-phosphaadamantane; mPTA+ = [1-methyl-1,3,5-triaza-7- phosphaadamantane]+; X= Cl-, I-) were investigated by electrospray mass spectrometry (ESI-MS), in flow-cell cyclic voltammetry, by microelectrodes, and by combined online electrochemistry and electrospray mass spectrometry (EC/ESI-MS) in dimethyl formamide solution. Coordination changes and the structures of the initial compounds and the products of the electro-oxidation of the Ru(II) complexes were traced by in situ EC MSn experiments which revealed their fragmentation pathways. ESI-MS collision-induced dissociation fragmentations of the initial reactants and the oxidation products were explained by soft acid-hard base considerations taking into account the different nature of Ru(II)-Ru(IV) centers. The electrochemical studies show that it is possible to tune the formal potentials for the oxidation of [CpRu L2 X] complexes by over 300 mV by proper selection of the ligands. The increase of the redox potential by the different ligands follows the order PTA< PPh3 < mPTA+. We demonstrate a similarity between the propensity of the ligand to fragment out in the gas phase and its relationship to the formal potential of the complex.
AB - Halogen complexes of ruthenium cyclopentadienyl [CpRu (PTA)2 X]; [CpRu (PTA) (PPh3) X]; [CpRu (PPh3) 2 Cl], and [CpRu (mPTA) (PPh3) X]+ (Cp= C5 H5; PTA=1,3,5-triaza-7-phosphaadamantane; mPTA+ = [1-methyl-1,3,5-triaza-7- phosphaadamantane]+; X= Cl-, I-) were investigated by electrospray mass spectrometry (ESI-MS), in flow-cell cyclic voltammetry, by microelectrodes, and by combined online electrochemistry and electrospray mass spectrometry (EC/ESI-MS) in dimethyl formamide solution. Coordination changes and the structures of the initial compounds and the products of the electro-oxidation of the Ru(II) complexes were traced by in situ EC MSn experiments which revealed their fragmentation pathways. ESI-MS collision-induced dissociation fragmentations of the initial reactants and the oxidation products were explained by soft acid-hard base considerations taking into account the different nature of Ru(II)-Ru(IV) centers. The electrochemical studies show that it is possible to tune the formal potentials for the oxidation of [CpRu L2 X] complexes by over 300 mV by proper selection of the ligands. The increase of the redox potential by the different ligands follows the order PTA< PPh3 < mPTA+. We demonstrate a similarity between the propensity of the ligand to fragment out in the gas phase and its relationship to the formal potential of the complex.
UR - http://www.scopus.com/inward/record.url?scp=33845255515&partnerID=8YFLogxK
U2 - 10.1149/1.2374938
DO - 10.1149/1.2374938
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:33845255515
SN - 0013-4651
VL - 154
SP - F7-F15
JO - Journal of the Electrochemical Society
JF - Journal of the Electrochemical Society
IS - 1
ER -