Abstract
Photoactive inorganic CdS quantum dots (QDs) or the native photosystem I (PSI) is immobilized onto a pyrroloquinoline quinone (PQQ) monolayer linked to Au electrodes to yield hybrid relay/QDs (or photosystem) assemblies. By the electrochemical biasing of the electrode potential, the relay units are retained in their oxidized PQQ or reduced PQQH 2 states. The oxidized or reduced states of the relay units dictate the direction of the photocurrent (anodic or cathodic). By the cyclic biasing of the electrode potential between the values E ≥ -0.05 V and E ≤ -0.3 V vs Ag quasi-reference electrode (Ag QRE), retaining the relay units in the oxidized PQQ or reduced PQQH 2 states, the photocurrents are respectively switched between anodic and cathodic values. Different configurations of electrically switchable photoelectrochemical systems are described: (i) the PQQ/CdS QDs/(triethanolamine, TEOA) or PQQ/PSI/(ascorbic acid/dichlorophenolindophenol, DCPIP) systems, leading to anodic photocurrents; (ii) the PQQ/CdS QDs (or PSI)/(flavin adenine dinucleotide) systems, leading to cathodic photocurrents; (iii) the PQQ/CdS QDs (or PSI)/(O 2) switchable systems, leading to cyclic anodic/cathodic switching of the photocurrents.
Original language | English |
---|---|
Pages (from-to) | 9258-9266 |
Number of pages | 9 |
Journal | ACS Nano |
Volume | 6 |
Issue number | 10 |
DOIs | |
State | Published - 23 Oct 2012 |
Keywords
- electrochemical switching
- modified electrode
- photocurrent
- photoelectrochemistry
- photosystem
- quantum dots
- switch