TY - JOUR
T1 - Electronic transduction of DNA sensing processes on surfaces
T2 - Amplification of DNA detection and analysis of single-base mismatches by tagged liposomes
AU - Patolsky, F.
AU - Lichtenstein, A.
AU - Willner, I.
PY - 2001
Y1 - 2001
N2 - Tagged, negatively charged, liposomes are used to amplify DNA sensing processes. The analyses of the target DNA are transduced electrochemically by using Faradaic impedance spectroscopy, or by microgravimetric measurements with Au-quartz crystals. By one method, a probe oligonucleotide (1) is assembled on Au-electrodes or Au-quartz crystals. The formation of the double-stranded assembly with the analyte DNA (2) is amplified by the association of the 3-oligonucleotide-functionalized liposomes to the sensing interface. The target DNA is analyzed by this method with a sensitivity limit that corresponds to 1 × 10-12 M. A second method to amplify the sensing of the analyte involves the interaction of the 1-functionalized electrode or Au-quartz crystal with the target DNA sample (2) that is pretreated with the biotinylated oligonucleotide (4). The formation of the three-component double-stranded assembly between 1/2/4 is amplified by the association of avidin and biotin-labeled liposomes to the sensing interfaces. By the secondary association of avidin and biotin-tagged liposomes, a dendritic-type amplification of the analysis of the DNA is accomplished. The analyte DNA (2) is sensed by this method with a sensitivity limit corresponding to 1 × 10-13 M. The biotin-tagged liposomes are also used to probe and amplify single-base mismatches in an analyte DNA. The 6-oligonucleotide-functionalized Au-electrode or Au-quartz crystal was used to differentiate the single-base mismatch (G) in the mutant (5) from the normal A-containing gene (5a). Polymerase-induced coupling of the biotinylated-C-base to the double-stranded assembly generated between 6 and 5 followed by the association of avidin and biotin-tagged liposomes is used to probe the single base mismatch. The functionalized liposomes provide a particulate building unit for the dendritic amplification of DNA sensing.
AB - Tagged, negatively charged, liposomes are used to amplify DNA sensing processes. The analyses of the target DNA are transduced electrochemically by using Faradaic impedance spectroscopy, or by microgravimetric measurements with Au-quartz crystals. By one method, a probe oligonucleotide (1) is assembled on Au-electrodes or Au-quartz crystals. The formation of the double-stranded assembly with the analyte DNA (2) is amplified by the association of the 3-oligonucleotide-functionalized liposomes to the sensing interface. The target DNA is analyzed by this method with a sensitivity limit that corresponds to 1 × 10-12 M. A second method to amplify the sensing of the analyte involves the interaction of the 1-functionalized electrode or Au-quartz crystal with the target DNA sample (2) that is pretreated with the biotinylated oligonucleotide (4). The formation of the three-component double-stranded assembly between 1/2/4 is amplified by the association of avidin and biotin-labeled liposomes to the sensing interfaces. By the secondary association of avidin and biotin-tagged liposomes, a dendritic-type amplification of the analysis of the DNA is accomplished. The analyte DNA (2) is sensed by this method with a sensitivity limit corresponding to 1 × 10-13 M. The biotin-tagged liposomes are also used to probe and amplify single-base mismatches in an analyte DNA. The 6-oligonucleotide-functionalized Au-electrode or Au-quartz crystal was used to differentiate the single-base mismatch (G) in the mutant (5) from the normal A-containing gene (5a). Polymerase-induced coupling of the biotinylated-C-base to the double-stranded assembly generated between 6 and 5 followed by the association of avidin and biotin-tagged liposomes is used to probe the single base mismatch. The functionalized liposomes provide a particulate building unit for the dendritic amplification of DNA sensing.
UR - http://www.scopus.com/inward/record.url?scp=0034800811&partnerID=8YFLogxK
U2 - 10.1021/ja0036256
DO - 10.1021/ja0036256
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 11457381
AN - SCOPUS:0034800811
SN - 0002-7863
VL - 123
SP - 5194
EP - 5205
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 22
ER -