TY - JOUR
T1 - Elimination of the asymptotic fractional dissociation problem in Kohn-Sham density-functional theory using the ensemble-generalization approach
AU - Kraisler, Eli
AU - Kronik, Leeor
N1 - Publisher Copyright:
© 2015 American Physical Society.
PY - 2015/3/17
Y1 - 2015/3/17
N2 - Many approximations within density-functional theory spuriously predict that a many-electron system can dissociate into fractionally charged fragments. Here, we revisit the case of dissociated diatomic molecules, known to exhibit this problem when studied within standard approaches, including the local spin-density approximation (LSDA). By employing our recently proposed [E. Kraisler and L. Kronik, Phys. Rev. Lett. 110, 126403 (2013)PRLTAO0031-900710.1103/PhysRevLett.110.126403] ensemble generalization we find that asymptotic fractional dissociation is eliminated in all systems examined, even if the underlying exchange correlation (xc) is still the LSDA. Furthermore, as a result of the ensemble-generalization procedure, the Kohn-Sham potential develops a spatial step between the dissociated atoms, reflecting the emergence of the derivative discontinuity in the xc energy functional. This step, predicted in the past for the exact Kohn-Sham potential and observed in some of its more advanced approximate forms, is a desired feature that prevents any fractional charge transfer between the system's fragments. It is usually believed that simple xc approximations such as the LSDA cannot develop this step. Our findings show, however, that ensemble generalization to fractional electron densities automatically introduces the desired step even to the most simple approximate xc functionals and correctly predicts asymptotic integer dissociation.
AB - Many approximations within density-functional theory spuriously predict that a many-electron system can dissociate into fractionally charged fragments. Here, we revisit the case of dissociated diatomic molecules, known to exhibit this problem when studied within standard approaches, including the local spin-density approximation (LSDA). By employing our recently proposed [E. Kraisler and L. Kronik, Phys. Rev. Lett. 110, 126403 (2013)PRLTAO0031-900710.1103/PhysRevLett.110.126403] ensemble generalization we find that asymptotic fractional dissociation is eliminated in all systems examined, even if the underlying exchange correlation (xc) is still the LSDA. Furthermore, as a result of the ensemble-generalization procedure, the Kohn-Sham potential develops a spatial step between the dissociated atoms, reflecting the emergence of the derivative discontinuity in the xc energy functional. This step, predicted in the past for the exact Kohn-Sham potential and observed in some of its more advanced approximate forms, is a desired feature that prevents any fractional charge transfer between the system's fragments. It is usually believed that simple xc approximations such as the LSDA cannot develop this step. Our findings show, however, that ensemble generalization to fractional electron densities automatically introduces the desired step even to the most simple approximate xc functionals and correctly predicts asymptotic integer dissociation.
UR - http://www.scopus.com/inward/record.url?scp=84927537292&partnerID=8YFLogxK
U2 - 10.1103/PhysRevA.91.032504
DO - 10.1103/PhysRevA.91.032504
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:84927537292
SN - 1050-2947
VL - 91
JO - Physical Review A - Atomic, Molecular, and Optical Physics
JF - Physical Review A - Atomic, Molecular, and Optical Physics
IS - 3
M1 - 032504
ER -