Enhanced biomechanically mediated “phagocytosis” in detached tumor cells

Yoel Goldstein, Katerina Tischenko, Yifat Brill‐karniely, Ofra Benny*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

2 Scopus citations


Uptake of particles by cells involves various natural mechanisms that are essential for their biological functions. The same mechanisms are used in the engulfment of synthetic colloidal drug carriers, while the extent of the uptake affects the biological performance and selectivity. Thus far, little is known regarding the effect of external biomechanical stimuli on the capacity of the cells to uptake nano and micro carriers. This is relevant for anchorage‐dependent cells that have detached from surfaces or for cells that travel in the body such as tumor cells, immune cells and various cir-culating stem cells. In this study, we hypothesize that cellular deformability is a crucial physical effector for the successful execution of the phagocytosis‐like uptake in cancer cells. To test this as-sumption, we develop a well‐controlled tunable method to compare the uptake of inert particles by cancer cells in adherent and non‐adherent conditions. We introduce a self‐designed 3D‐printed ap-paratus, which enables constant stirring while facilitating a floating environment for cell incubation. We reveal a mechanically mediated phagocytosis‐like behavior in various cancer cells, that was dramatically enhance in the detached cell state. Our findings emphasize the importance of including proper biomechanical cues to reliably mimic certain physiological scenarios. Beyond that, we offer a cost‐effective accessible research tool to study mixed cultures for both adherent and non‐adherent cells.

Original languageAmerican English
Article number947
Issue number8
StatePublished - 2 Aug 2021

Bibliographical note

Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.


  • 3D printing
  • Cancer
  • Cell mechanics
  • Floating cells
  • Particle uptake


Dive into the research topics of 'Enhanced biomechanically mediated “phagocytosis” in detached tumor cells'. Together they form a unique fingerprint.

Cite this