Enhanced Readout and Sensitivity of Diamond N- V Centers Coupled to Hyperbolic Metamaterial Photonic Cavities

Jonathan Bar-David, Sigal A. Wolf, S. R.K.Chaitanya Indukuri, Rotem Malkinson, Noa Mazurski, Uriel Levy, Nir Bar-Gill

Research output: Contribution to journalArticlepeer-review

Abstract

Nitrogen-vacancy (N-V) centers are diamond lattice defects that may be manipulated and controlled by visible light and microwave irradiation. They are considered a promising solid-state platform for a broad range of quantum technologies, such as magnetic field sensing. A major limitation in realizing such applications is the weak optical signal attained from the NVs, making the readout inefficient and prone to noise. Here, we report the increased brightness and shortened lifetime of N-V centers coupled to hyperbolic metamaterial photonic cavities with optimized dispersion characteristics. As a result, we demonstrate the enhancement of magnetic field sensitivity and measurement SNR. These results introduce a broadly applicable, robust, and technically accessible platform, promising improved performance relevant for a multitude of solid-state defects and their applications.

Original languageEnglish
Article number064074
JournalPhysical Review Applied
Volume19
Issue number6
DOIs
StatePublished - Jun 2023

Bibliographical note

Publisher Copyright:
© 2023 American Physical Society.

Fingerprint

Dive into the research topics of 'Enhanced Readout and Sensitivity of Diamond N- V Centers Coupled to Hyperbolic Metamaterial Photonic Cavities'. Together they form a unique fingerprint.

Cite this