Entropy theory without a past

E. Glasner*, J. P. Thouvenot, B. Weiss

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

49 Scopus citations

Abstract

This paper treats the Pinsker algebra of a dynamical system in a way which avoids the use of an ordering on the acting group. This enables us to prove some of the classical results about entropy and the Pinsker algebra in the general setup of measurepreserving dynamical systems, where the acting group is a discrete countable amenable group. We prove a basic disjointness theorem which asserts the relative disjointness in the sense of Furstenberg, of 0- entropy extensions from completely positive entropy (c.p.e.) extensions. This theorem is used to prove several classical results in the general setup. For example, we show that the Pinsker factor of a product system is equal to the product of the Pinsker factors of the component systems. Another application is to obtain a generalization (as well as a simpler proof) of the quasifactor theorem for 0- entropy systems of Glasner and Weiss.

Original languageEnglish
Pages (from-to)1355-1370
Number of pages16
JournalErgodic Theory and Dynamical Systems
Volume20
Issue number5
DOIs
StatePublished - Oct 2000

Fingerprint

Dive into the research topics of 'Entropy theory without a past'. Together they form a unique fingerprint.

Cite this