TY - JOUR
T1 - Epigallocatechin gallate induces upregulation of the two-component VraSR system by evoking a cell wall stress response in Staphylococcus aureus
AU - Levinger, Oren
AU - Bikels-Goshen, Tamar
AU - Landau, Elad
AU - Fichman, Merav
AU - Shapira, Roni
PY - 2012/11
Y1 - 2012/11
N2 - We previously found that a short exposure of Staphylococcus aureus to subinhibitory (SI) doses of epigallocatechin gallate (EGCG) results in increased cell wall thickness, adaptation, and enhanced tolerance to cell-wall-targeted antibiotics. In this study, the response to EGCG of sigB and vraSR transcription factor mutants was characterized. We show that in contrast to the results observed for wild-type (WT) strains, an S. aureus 315 vraSR null mutant exposed to SI doses of EGCG did not exhibit increased tolerance to EGCG and oxacillin. A diminished increase in tolerance to ampicillin (from 16-fold to 4-fold) and no change in the magnitude of resistance to vancomycin were observed. Preexposure to EGCG enhanced the tolerance of wild-type and sigB null mutant cells to lysostaphin, but this enhancement was much weaker in the vraSR null mutant. Marked upregulation (about 60-fold) of vraR and upregulation of the peptidoglycan biosynthesis-associated genes murA, murF, and pbp2 (2-, 5-, and 6-fold, respectively) in response to SI doses of EGCG were determined by quantitative reverse transcription-PCR (qRTPCR). EGCG also induced the promoter of sas016 (encoding a cell wall stress protein of unknown function which is not induced in vraSR null mutants) in a concentration-dependent manner, showing kinetics comparable to those of cell-wall-targeting antibiotics. Taken together, our results suggest that the two-component VraSR system is involved in modulating the cell response to SI doses of EGCG.
AB - We previously found that a short exposure of Staphylococcus aureus to subinhibitory (SI) doses of epigallocatechin gallate (EGCG) results in increased cell wall thickness, adaptation, and enhanced tolerance to cell-wall-targeted antibiotics. In this study, the response to EGCG of sigB and vraSR transcription factor mutants was characterized. We show that in contrast to the results observed for wild-type (WT) strains, an S. aureus 315 vraSR null mutant exposed to SI doses of EGCG did not exhibit increased tolerance to EGCG and oxacillin. A diminished increase in tolerance to ampicillin (from 16-fold to 4-fold) and no change in the magnitude of resistance to vancomycin were observed. Preexposure to EGCG enhanced the tolerance of wild-type and sigB null mutant cells to lysostaphin, but this enhancement was much weaker in the vraSR null mutant. Marked upregulation (about 60-fold) of vraR and upregulation of the peptidoglycan biosynthesis-associated genes murA, murF, and pbp2 (2-, 5-, and 6-fold, respectively) in response to SI doses of EGCG were determined by quantitative reverse transcription-PCR (qRTPCR). EGCG also induced the promoter of sas016 (encoding a cell wall stress protein of unknown function which is not induced in vraSR null mutants) in a concentration-dependent manner, showing kinetics comparable to those of cell-wall-targeting antibiotics. Taken together, our results suggest that the two-component VraSR system is involved in modulating the cell response to SI doses of EGCG.
UR - http://www.scopus.com/inward/record.url?scp=84868620921&partnerID=8YFLogxK
U2 - 10.1128/AEM.02253-12
DO - 10.1128/AEM.02253-12
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 22941085
AN - SCOPUS:84868620921
SN - 0099-2240
VL - 78
SP - 7954
EP - 7959
JO - Applied and Environmental Microbiology
JF - Applied and Environmental Microbiology
IS - 22
ER -